237 research outputs found
LED Monitoring System for the BTeV Lead Tungstate Crystal Calorimeter Prototype
We report on the performance of a monitoring system for a prototype
calorimeter for the BTeV experiment that uses Lead Tungstate crystals coupled
with photomultiplier tubes. The tests were carried out at the 70 GeV
accelerator complex at Protvino, Russia.Comment: 12 pages, 8 figures, LaTeX2e, revised versio
Development of a Momentum Determined Electron Beam in the 1 -45 GeV Range
A beam line for electrons with energies in the range of 1 to 45 GeV, low
contamination of hadrons and muons and high intensity up to 10^6 per
accelerator spill at 27 GeV was setup at U70 accelerator in Protvino, Russia. A
beam tagging system based on drift chambers with 160 micron resolution was able
to measure relative electron beam momentum precisely. The resolution sigma_p p
was 0.13% at 45 GeV where multiple scattering is negligible. This test beam
setup provided the possibility to study properties of lead tungstate crystals
(PbWO_4) for the BTeV experiment at Fermilab.Comment: 12 pages, 8 figures; work done by the BTeV Electromagnetic
Calorimeter grou
Comparison of Radiation Damage in Lead Tungstate Crystals under Pion and Gamma Irradiation
Studies of the radiation hardness of lead tungstate crystals produced by the
Bogoroditsk Techno-Chemical Plant in Russia and the Shanghai Institute of
Ceramics in China have been carried out at IHEP, Protvino. The crystals were
irradiated by a 40-GeV pion beam. After full recovery, the same crystals were
irradiated using a -ray source. The dose rate profiles along
the crystal length were observed to be quite similar. We compare the effects of
the two types of radiation on the crystals light output.Comment: 10 pages, 8 figures, Latex 2e, 28.04.04 - minor grammatical change
Correlation of Beam Electron and LED Signal Losses under Irradiation and Long-term Recovery of Lead Tungstate Crystals
Radiation damage in lead tungstate crystals reduces their transparency. The
calibration that relates the amount of light detected in such crystals to
incident energy of photons or electrons is of paramount importance to
maintaining the energy resolution the detection system. We report on tests of
lead tungstate crystals, read out by photomultiplier tubes, exposed to
irradiation by monoenergetic electron or pion beams. The beam electrons
themselves were used to measure the scintillation light output, and a blue
light emitting diode (LED) was used to track variations of crystals
transparency. We report on the correlation of the LED measurement with
radiation damage by the beams and also show that it can accurately monitor the
crystals recovery from such damage.Comment: 9 pages, 6 figures, LaTeX2
Design and performance of LED calibration system prototype for the lead tungstate crystal calorimeter
A highly stable monitoring system based on blue and red light emitting diodes
coupled to a distribution network comprised of optical fibers has been
developed for an electromagnetic calorimeter that uses lead tungstate crystals
readout with photomultiplier tubes. We report of the system prototype design
and on the results of laboratory tests. Stability better than 0.1% (r.m.s.) has
been achieved during one week of prototype operation.Comment: 10 pages, 6 figures, LaTeX2
Study of Radiation Damage in Lead Tungstate Crystals Using Intense High Energy Beams
We report on the effects of radiation on the light output of lead tungstate
crystals. The crystals were irradiated by pure, intense high energy electron
and hadron beams as well as by a mixture of hadrons, neutrons and gammas. The
crystals were manufactured in Bogoroditsk, Apatity (both Russia), and Shanghai
(China). These studies were carried out at the 70-GeV proton accelerator in
Protvino
B Physics at the Tevatron: Run II and Beyond
This report provides a comprehensive overview of the prospects for B physics
at the Tevatron. The work was carried out during a series of workshops starting
in September 1999. There were four working groups: 1) CP Violation, 2) Rare and
Semileptonic Decays, 3) Mixing and Lifetimes, 4) Production, Fragmentation and
Spectroscopy. The report also includes introductory chapters on theoretical and
experimental tools emphasizing aspects of B physics specific to hadron
colliders, as well as overviews of the CDF, D0, and BTeV detectors, and a
Summary.Comment: 583 pages. Further information on the workshops, including
transparencies, can be found at the workshop's homepage:
http://www-theory.lbl.gov/Brun2/. The report is also available in 2-up
http://www-theory.lbl.gov/Brun2/report/report2.ps.gz or chapter-by-chapter
http://www-theory.lbl.gov/Brun2/report
- …