397 research outputs found

    The Effect of Focus on Creaky Phonation in Mandarin Chinese Tones

    Get PDF
    Previous studies of the prosodic realization of focus in Mandarin Chinese show an expansion of the pitch range of lexical tones. It is less clear, however, whether focus affects the Creaky Phonation (CP) that often co-occurs with the Dipping third tone (T3), and to some extent, also with the Falling fourth tone (T4). This study investigates the effect of focus on the acoustic properties of the four Mandarin tones, and while it confirms the expansion of the pitch range under focus, it does not find that focus affects CP in T3; it only finds an effect of focus on CP in T4. Both the F0 and CP patterns are also considered in relation to the Functional Load Hypothesis, specifically, the relationship between the contrastive properties of a language and the manifestation of prominence

    Endogenous Sulfur Dioxide: A New Member of Gasotransmitter Family in the Cardiovascular System

    Get PDF
    Sulfur dioxide (SO2) was previously regarded as a toxic gas in atmospheric pollutants. But it has been found to be endogenously generated from metabolism of sulfur-containing amino acids in mammals through transamination by aspartate aminotransferase (AAT). SO2 could be produced in cardiovascular tissues catalyzed by its synthase AAT. In recent years, studies revealed that SO2 had physiological effects on the cardiovascular system, including vasorelaxation and cardiac function regulation. In addition, the pathophysiological effects of SO2 were also determined. For example, SO2 ameliorated systemic hypertension and pulmonary hypertension, prevented the development of atherosclerosis, and protected against myocardial ischemia-reperfusion (I/R) injury and isoproterenol-induced myocardial injury. These findings suggested that endogenous SO2 was a novel gasotransmitter in the cardiovascular system and provided a new therapy target for cardiovascular diseases.National Natural Science Foundation of China [81400311, 31440052, 91439110]SCI(E)[email protected]

    New lower order mixed finite element methods for linear elasticity

    Full text link
    New lower order H(div)H(\textrm{div})-conforming finite elements for symmetric tensors are constructed in arbitrary dimension. The space of shape functions is defined by enriching the symmetric quadratic polynomial space with the (d+1)(d+1)-order normal-normal face bubble space. The reduced counterpart has only d(d+1)2d(d+1)^2 degrees of freedom. In two dimensions, basis functions are explicitly given in terms of barycentric coordinates. Lower order conforming finite element elasticity complexes starting from the Bell element, are developed in two dimensions. These finite elements for symmetric tensors are applied to devise robust mixed finite element methods for the linear elasticity problem, which possess the uniform error estimates with respect to the Lam\'{e} coefficient λ\lambda, and superconvergence for the displacement. Numerical results are provided to verify the theoretical convergence rates.Comment: 23 pages, 2 figure

    CLIP Brings Better Features to Visual Aesthetics Learners

    Full text link
    The success of pre-training approaches on a variety of downstream tasks has revitalized the field of computer vision. Image aesthetics assessment (IAA) is one of the ideal application scenarios for such methods due to subjective and expensive labeling procedure. In this work, an unified and flexible two-phase \textbf{C}LIP-based \textbf{S}emi-supervised \textbf{K}nowledge \textbf{D}istillation paradigm is proposed, namely \textbf{\textit{CSKD}}. Specifically, we first integrate and leverage a multi-source unlabeled dataset to align rich features between a given visual encoder and an off-the-shelf CLIP image encoder via feature alignment loss. Notably, the given visual encoder is not limited by size or structure and, once well-trained, it can seamlessly serve as a better visual aesthetic learner for both student and teacher. In the second phase, the unlabeled data is also utilized in semi-supervised IAA learning to further boost student model performance when applied in latency-sensitive production scenarios. By analyzing the attention distance and entropy before and after feature alignment, we notice an alleviation of feature collapse issue, which in turn showcase the necessity of feature alignment instead of training directly based on CLIP image encoder. Extensive experiments indicate the superiority of CSKD, which achieves state-of-the-art performance on multiple widely used IAA benchmarks

    Stellar Parameters of Main Sequence Turn-off Star Candidates Observed with the LAMOST and Kepler

    Full text link
    Main sequence turn-off (MSTO) stars have advantages as indicators of Galactic evolution since their ages could be robustly estimated from atmospheric parameters. Hundreds of thousands of MSTO stars have been selected from the LAMOST Galactic sur- vey to study the evolution of the Galaxy, and it is vital to derive accurate stellar parameters. In this work, we select 150 MSTO star candidates from the MSTO stars sample of Xiang that have asteroseismic parameters and determine accurate stellar parameters for these stars combing the asteroseismic parameters deduced from the Kepler photometry and atmospheric parameters deduced from the LAMOST spectra.With this sample, we examine the age deter- mination as well as the contamination rate of the MSTO stars sample. A comparison of age between this work and Xiang shows a mean difference of 0.53 Gyr (7%) and a dispersion of 2.71 Gyr (28%). The results show that 79 of the candidates are MSTO stars, while the others are contaminations from either main sequence or sub-giant stars. The contamination rate for the oldest stars is much higher than that for the younger stars. The main cause for the high contamination rate is found to be the relatively large systematic bias in the LAMOST surface gravity estimates.Comment: accepted by RA

    Open-Set Image Tagging with Multi-Grained Text Supervision

    Full text link
    In this paper, we introduce the Recognize Anything Plus Model (RAM++), an open-set image tagging model effectively leveraging multi-grained text supervision. Previous approaches (e.g., CLIP) primarily utilize global text supervision paired with images, leading to sub-optimal performance in recognizing multiple individual semantic tags. In contrast, RAM++ seamlessly integrates individual tag supervision with global text supervision, all within a unified alignment framework. This integration not only ensures efficient recognition of predefined tag categories, but also enhances generalization capabilities for diverse open-set categories. Furthermore, RAM++ employs large language models (LLMs) to convert semantically constrained tag supervision into more expansive tag description supervision, thereby enriching the scope of open-set visual description concepts. Comprehensive evaluations on various image recognition benchmarks demonstrate RAM++ exceeds existing state-of-the-art (SOTA) open-set image tagging models on most aspects. Specifically, for predefined commonly used tag categories, RAM++ showcases 10.2 mAP and 15.4 mAP enhancements over CLIP on OpenImages and ImageNet. For open-set categories beyond predefined, RAM++ records improvements of 5.0 mAP and 6.4 mAP over CLIP and RAM respectively on OpenImages. For diverse human-object interaction phrases, RAM++ achieves 7.8 mAP and 4.7 mAP improvements on the HICO benchmark. Code, datasets and pre-trained models are available at \url{https://github.com/xinyu1205/recognize-anything}.Comment: Homepage: https://github.com/xinyu1205/recognize-anythin
    • …
    corecore