43 research outputs found

    Enhancing Higher Order Question of Student Through Problem Based Learning at Grade X MIA 6 of SMA N 4 Surakarta

    Full text link
    The research aims to enhance the Higher Order Question of student through problem based learning in Biology at Grade X MIA 6 of SMA N 4 Surakarta. The research was a four-cycle action research conducted in academic year 2014/2015. All questions were analyzed based on revised Bloom Taxonomy. Data were validated using triangulation method. The result of the research showed that problem based learning effectively enhance student\u27s High Order Question (C4-C6). The percentage of each High Order Question (C4-C6) in pre cycle were 0%. The percentage of C4 type question at first cycle (73,14%), second cycle (52,13%), third cycle (56,05%), and fourth cycle (58,42%). The percentage of each High Order Question (C4-C6) in pre cycle were 0%. The percentage of C5 type question at first cycle (18,37%), second cycle (9,57%), third cycle (10,30%), and fourth cycle (58,42%). The percentage of each High Order Question (C4-C6) in pre cycle were 0%. The percentage of C6 type question at first cycle (8,16%), second cycle (38,30%), third cycle (41,18%) and fourth cycle (25,74%)

    Random Mutagenesis Applied to Reveal Factors Involved in Oxidative Tolerance and Biofilm Formation in Foodborne Cronobacter malonaticus

    Get PDF
    Cronobacter species are linked with life-treating diseases in neonates and show strong tolerances to environmental stress. However, the information about factors involved in oxidative tolerance in Cronobacter remains elusive. Here, factors involved in oxidative tolerance in C. malonaticus were identified using a transposon mutagenesis. Eight mutants were successfully screened based on a comparison of the growth of strains from mutant library (n = 215) and wild type (WT) strain under 1.0 mM H2O2. Mutating sites including thioredoxin 2, glutaredoxin 3, pantothenate kinase, serine/threonine protein kinase, pyruvate kinase, phospholipase A, ferrous iron transport protein A, and alanine racemase 2 were successfully identified by arbitrary PCR and sequencing alignment. Furthermore, the comparison about quantity and structure of biofilms formation among eight mutants and WT was determined using crystal violet staining (CVS), scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM). Results showed that the biofilms of eight mutants significantly decreased within 48 h compared to that of WT, suggesting that mutating genes play important roles in biofilm formation under oxidative stress. The findings provide valuable information for deeply understanding molecular mechanism about oxidative tolerance of C. malonaticus

    Performance of ACMG-AMP Variant-Interpretation Guidelines among Nine Laboratories in the Clinical Sequencing Exploratory Research Consortium

    Get PDF
    Evaluating the pathogenicity of a variant is challenging given the plethora of types of genetic evidence that laboratories consider. Deciding how to weigh each type of evidence is difficult, and standards have been needed. In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published guidelines for the assessment of variants in genes associated with Mendelian diseases. Nine molecular diagnostic laboratories involved in the Clinical Sequencing Exploratory Research (CSER) consortium piloted these guidelines on 99 variants spanning all categories (pathogenic, likely pathogenic, uncertain significance, likely benign, and benign). Nine variants were distributed to all laboratories, and the remaining 90 were evaluated by three laboratories. The laboratories classified each variant by using both the laboratory's own method and the ACMG-AMP criteria. The agreement between the two methods used within laboratories was high (K-alpha = 0.91) with 79% concordance. However, there was only 34% concordance for either classification system across laboratories. After consensus discussions and detailed review of the ACMG-AMP criteria, concordance increased to 71%. Causes of initial discordance in ACMG-AMP classifications were identified, and recommendations on clarification and increased specification of the ACMG-AMP criteria were made. In summary, although an initial pilot of the ACMG-AMP guidelines did not lead to increased concordance in variant interpretation, comparing variant interpretations to identify differences and having a common framework to facilitate resolution of those differences were beneficial for improving agreement, allowing iterative movement toward increased reporting consistency for variants in genes associated with monogenic disease

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    DEANet: Dual Encoder with Attention Network for Semantic Segmentation of Remote Sensing Imagery

    Full text link
    Remote sensing has now been widely used in various fields, and the research on the automatic land-cover segmentation methods of remote sensing imagery is significant to the development of remote sensing technology. Deep learning methods, which are developing rapidly in the field of semantic segmentation, have been widely applied to remote sensing imagery segmentation. In this work, a novel deep learning network—Dual Encoder with Attention Network (DEANet) is proposed. In this network, a dual-branch encoder structure, whose first branch is used to generate a rough guidance feature map as area attention to help re-encode feature maps in the next branch, is proposed to improve the encoding ability of the network, and an improved pyramid partial decoder (PPD) based on the parallel partial decoder is put forward to make fuller use of the features form the encoder along with the receptive filed block (RFB). In addition, an edge attention module using the transfer learning method is introduced to explicitly advance the segmentation performance in edge areas. Except for structure, a loss function composed with the weighted Cross Entropy (CE) loss and weighted Union subtract Intersection (UsI) loss is designed for training, where UsI loss represents a new region-based aware loss which replaces the IoU loss to adapt to multi-classification tasks. Furthermore, a detailed training strategy for the network is introduced as well. Extensive experiments on three public datasets verify the effectiveness of each proposed module in our framework and demonstrate that our method achieves more excellent performance over some state-of-the-art methods

    Characterisation of scavenger receptor class B type 1 in rare minnow (Gobiocypris rarus)

    Full text link
    Scavenger receptor class B type 1 (SRB1) is a transmembrane protein belonging to the scavenger receptors (SRs) family and it plays an important role in viral entry. Not much is known on SRB1 in teleost fish. Grass carp reovirus (GCRV) cause huge economic losses in grass carp industry. In this study, rare minnow (Gobiocypris rarus) was used as a model fish to investigate the mechanism of GCRV infection, which is sensitive to GCRV. The structure of SRB1 gene in G. rarus (GrSRB1) was cloned and elucidated. GrSRB1 is composed of 13 exons and 12 introns, and its full-length cDNA is 2296 bp in length, with 1521 bp open reading frame (ORF) that encodes a 506 amino acid protein. The GrSRB1 protein is predicted to contain a typical CD36 domain and two transmembrane regions. In G. rarus, GrSRB1 is expressed strongly in the liver (L), intestines (I), brain (B) and muscle (M), while it is expressed poorly in the heart (H), middle kidney (MK), head kidney (HK) and gills (G). After infection with GCRV, GrSRB1 expression was up-regulated in main immune tissues during the early infection period. Moreover, co-immunoprecipitation assays revealed that GrSRB1 could interact with the outer capsid protein of GCRV (VP5 and VP7). These results suggest that GrSRB1 could be a receptor for GCRV. We have managed to characterize the GrSRB1 gene and provide evidence for its potential functions for GCRV entry into host cells

    Anisotropic mode excitations and enhanced quantum interference in quantum emitter-metasurface coupled systems

    Full text link
    This study proposes a nanophotonic structure that supports quantum interference (QI) between orthogonal decay channels in multilevel quantum emitters within the framework of the quantum master equation. The Green functions of the electric field are obtained by applying boundary conditions in the presence of two-dimensional metasurfaces. We demonstrate distinct in-plane excitation features of the surface plasmon modes (SPMs) with the anisotropic metasurfaces tailored to conductivity components. In particular, we observed that the Purcell factor of transitions with orthogonal polarizations experiences unequal enhancements, owing to the anisotropic propagation of the SPMs. This property depends only on the anisotropy of the metasurfaces; thus, it is easily manipulated. Using this platform and considering experimentally achievable material parameters, we predict a strong interference effect in three-level quantum emitters. In principle, this enables the generation of maximum QI. Our study provides a method for realizing QI systems and has potential applications in highly integrated, tuneable quantum devices
    corecore