6 research outputs found
Altered calcium signaling in cancer cells
It is the nature of the calcium signal, as determined by the coordinated activity of a suite of calcium channels, pumps, exchangers and binding proteins that ultimately guides a cell's fate. Deregulation of the calcium signal is often deleterious and has been linked to each of the 'cancer hallmarks'. Despite this, we do not yet have a full understanding of the remodeling of the calcium signal associated with cancer. Such an understanding could aid in guiding the development of therapies specifically targeting altered calcium signaling in cancer cells during tumorigenic progression. Findings from some of the studies that have assessed the remodeling of the calcium signal associated with tumorigenesis and/or processes important in invasion and metastasis are presented in this review. The potential of new methodologies is also discussed. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers
Assessment of the TRPM8 inhibitor AMTB in breast cancer cells and its identification as an inhibitor of voltage gated sodium channels
To assess levels of the calcium permeable transient receptor potential cation channel, subfamily melastatin, member 8 (TRPM8) in breast cancer molecular subtypes and to assess the consequences of TRPM8 pharmacological inhibition with AMTB (an inhibitor of TRPM8) on breast cancer cell lines.Cell viability and migration of breast cancer cells was determined using MTS assays and wound healing assays, respectively. RNA-Seq analysis of breast tumours and qPCR in breast cancer cell lines were used to assess mRNA levels of ion channels. Membrane potential assays were employed to assess the effects of AMTB against specific voltage gated sodium channels (Na).TRPM8 levels were significantly higher in breast cancers of the basal molecular subtype. AMTB decreased viable cell number in MDA-MB-231 and SK-BR-3 breast cancer cell lines (30 and 100 μM), and also reduced the migration of MDA-MB-231 cells (30 μM). However, these effects were independent of TRPM8, as no TRPM8 mRNA was detected in MDA-MB-231 cells. AMTB was identified as an inhibitor of Naisoforms. Na1.1-1.9 were expressed in a number of breast cancer cell lines, with Na1.5 mRNA highest in MDA-MB-231 cells compared to the other breast cancer cell lines assessed.TRPM8 levels may be elevated in basal breast cancers, however, TRPM8 expression appears to be lost in many breast cancer cell lines. Some of the effects of AMTB attributed to TRPM8 may be due to effects on Nachannels
The voltage gated Ca2+-channel Cav3.2 and therapeutic responses in breast cancer
Background: Understanding the cause of therapeutic resistance and identifying new biomarkers in breast cancer to predict therapeutic responses will help optimise patient care. Calcium (Ca2+)-signalling is important in a variety of processes associated with tumour progression, including breast cancer cell migration and proliferation. Ca2+-signalling is also linked to the acquisition of multidrug resistance. This study aimed to assess the expression level of proteins involved in Ca2+-signalling in an in vitro model of trastuzumab-resistance and to assess the ability of identified targets to reverse resistance and/or act as potential biomarkers for prognosis or therapy outcome
TRPC1 is a differential regulator of hypoxia-mediated events and Akt signalling in PTEN-deficient breast cancer cells
Hypoxia is a feature of the tumour microenvironment that promotes invasiveness, resistance to chemotherapeutics and cell survival. Our studies identify the transient receptor potential canonical-1 (TRPC1) ion channel as a key component of responses to hypoxia in breast cancer cells. This regulation includes control of specific epithelial to mesenchymal transition (EMT) events and hypoxia-mediated activation of signalling pathways such as activation of the EGFR, STAT3 and the autophagy marker LC3B, through hypoxia-inducible factor-1α (HIF1α)-dependent and -independent mechanisms. TRPC1 regulated HIF1α levels in PTEN-deficient MDA-MB-468 and HCC1569 breast cancer cell lines. This regulation arises from effects on the constitutive translation of HIF1α under normoxic conditions via an Akt-dependent pathway. In further support of the role of TRPC1 in EMT, its expression is closely associated with EMT- and metastasisrelated genes in breast tumours, and is enhanced in basal B breast cancer cell lines. TRPC1 expression is also significantly prognostic for basal breast cancers, particularly those classified as lymph node positive. The defined roles of TRPC1 identified here could be therapeutically exploited for the control of oncogenic pathways in breast cancer cells