4,090 research outputs found
Does Chinese medicine consultation share features and effects of cognitive-behavioural therapy? Using traditional acupuncture as an example
Background: Acupuncture, as part of Chinese medicine (CM), is based on a holistic therapeutic theory. Individualised differential diagnosis is the essence and an integral part of its practice. It leads to an individualised treatment plan. Little research on the nature and effects of the CM consultation has been conducted. Previous studies showed behavioural and cognitive changes after traditional acupuncture treatment. In this article, through a hypothetical case, we illustrated a CM consultation process, examined the changes produced and compared the features between CM consultation and cognitive-behavioural therapy (CBT). Main text: The two therapies share nine out of eleven features, including five specific factors that took different forms in CM and CBT and four non-specific factors known to partially mediate the relationship between psychological therapies and positive therapeutic outcomes. Although Chinese medicine treatments induce changes in behaviours as well as cognition, CM consultation does not share two essential features of CBT, namely a framework of the interaction between behaviour and cognition and teaching patients how to identify and dispute dysfunctional thoughts. Discussion: CM consultation has CBT-like features and effects. Existing qualitative studies suggest that changes in behaviours and cognition after traditional acupuncture treatment are probably due to the CM consultation process or its combined effect with needling, rather than acupuncture needling alone. This hypothesis provides a new perspective on the contributing factors to acupuncture effect. CBT-like features and effects of traditional acupuncture is underestimated by practitioners and researchers, and need to be taken into consideration in acupuncture trial design and clinical practice
Antimicrobial and anti-biofilm activities of plant extracts against Pseudomonas aeruginosa – a review
Antimicrobial resistance among bacterial pathogens, including Pseudomonas aeruginosa, is a global problem that has led to research on naturally occurring compounds as an alternative source of antibacterial and anti-biofilm agents. This review focuses on determining plant extracts' antimicrobial and anti-biofilm activities against P. aeruginosa, an opportunistic pathogen contributing to microbial and biofilm-associated infections in humans. Medicinal plants are being widely researched as they are rich sources of phytochemicals, including flavonoids, alkaloids, tannins and terpenoids. These phytochemicals have been well known for their antibacterial activity, which contributes to the effectiveness of certain plants, including Punica granatum and Triumfetta welwitschia, against P. aeruginosa. Hypericum perforatum and Berginia ciliata contains phytochemicals that directly inhibit the quorum sensing mechanism, inhibiting the direct cell-to-cell communication, thereby preventing or reducing biofilm formation by P. aeruginosa. Plant extracts also inhibit bacterial growth and should be considered an alternative to antibiotics. Furthermore, plant extracts can be used with antibiotics for better efficacy against P. aeruginosa. However, more research must be carried out to select plants with a broad spectrum of activity against not only P. aeruginosa infections but other gram-negative bacteria in general. It would be economically viable to develop as a therapeutic drug. This would align with the third United Nations sustainable development goals on good health and well-being and is a significant step forward in the battle against antibiotic resistance
Machine learning-enhanced all-photovoltaic blended systems for energy-efficient sustainable buildings
The focus of this work is on the optimization of an all-photovoltaic hybrid power generation systems for energy-efficient and sustainable buildings, aiming for net-zero emissions. This research proposes a hybrid approach combining conventional solar panels with advanced solar window systems and building integrated photovoltaic (BIPV) systems. By analyzing the meteorological data and using the simulation models, we predict energy outputs for different cities such as Kuala Lumpur, Sydney, Toronto, Auckland, Cape Town, Riyadh, and Kuwait City. Although there are long payback times, our simulations demonstrate that the proposed all-PV blended system can meet the energy needs of modern buildings (up to 78%, location dependent) and can be scaled up for entire buildings. The simulated results indicate that Middle Eastern cities are particularly suitable for these hybrid systems, generating approximately 1.2 times more power compared to Toronto, Canada. Additionally, we predict the outcome of the possible incorporation of intelligent and automated systems to boost overall energy efficiency toward achieving a sustainable building environment
Roll motion compensation by active marine gyrostabiliser
Unmanned Surface Vehicle (USV) has been gaining more marine applications nowadays. However, the USV is vulnerable to excessive rolling motions induced by water waves, and this phenomenon may cause significant downtime to the operations of USV and engender detrimental effects to the on-board instrument and sensors. Active control system had been proposed to compensate the rolling stability issue but most of the proposed devices were expensive. This paper developed a gyrostabiliser on USV model to compensate the excessive rolling motion. Gyrostabiliser consists of rotor, gimbal and spinning axes, which commonly used for measuring or maintaining orientations and angular velocities. The gyrostabiliser was mounted vertically inside the USV model. Experiments were conducted to obtain the ideal gains of gyrostabiliser’s controller, to investigate the differences between active- and passive-gyrostabiliser, and to identify the induced pitch effect of the vertical gyrostabiliser to the USV model. The roll angle of the USV was measured by gyro sensor, whereas the precession motor and flywheel motor were controlled by a non-encoder Direct-Current (DC) motor. A proportional controller of the gyrostabiliser was implemented through Arduino Integrated Development Environment (IDE) to ensure optimal performance of gyrostabiliser in precession speed and direction control. The results showed that both active- and passive-gyrostabiliser managed to mitigate the roll angle of USV from +/- 15° back to less than 1° and reached steady state within 2.32 seconds and 2.60 seconds, respectively. The active gyrostabiliser had advantage to return to zero precession angle while the passive gyrostabiliser accumulated 30° precession angle in the experiment. The induced pitch angle by the gyrostabiliser had been found in an insignificant magnitude for the case study. The outcomes of this paper lead to an alternative for improving the robustness of USV in rolling reduction.
Roll motion compensation by active marine gyrostabiliser
922-929Unmanned Surface Vehicle (USV) has been gaining more marine applications nowadays. However, the USV is
vulnerable to excessive rolling motions induced by water waves, and this phenomenon may cause significant downtime to
the operations of USV and engender detrimental effects to the on-board instrument and sensors. Active control system had
been proposed to compensate the rolling stability issue but most of the proposed devices were expensive. This paper
developed a gyrostabiliser on USV model to compensate the excessive rolling motion. Gyrostabiliser consists of rotor,
gimbal and spinning axes, which commonly used for measuring or maintaining orientations and angular velocities. The
gyrostabiliser was mounted vertically inside the USV model. Experiments were conducted to obtain the ideal gains of
gyrostabiliser’s controller, to investigate the differences between active- and passive-gyrostabiliser, and to identify the
induced pitch effect of the vertical gyrostabiliser to the USV model. The roll angle of the USV was measured by gyro
sensor, whereas the precession motor and flywheel motor were controlled by a non-encoder Direct-Current (DC) motor. A
proportional controller of the gyrostabiliser was implemented through Arduino Integrated Development Environment (IDE)
to ensure optimal performance of gyrostabiliser in precession speed and direction control. The results showed that both
active- and passive-gyrostabiliser managed to mitigate the roll angle of USV from +/- 15° back to less than 1° and reached
steady state within 2.32 seconds and 2.60 seconds, respectively. The active gyrostabiliser had advantage to return to zero
precession angle while the passive gyrostabiliser accumulated 30° precession angle in the experiment. The induced pitch
angle by the gyrostabiliser had been found in an insignificant magnitude for the case study. The outcomes of this paper lead
to an alternative for improving the robustness of USV in rolling reduction
Assisted evolution enables HIV-1 to overcome a high trim5α-imposed genetic barrier to rhesus macaque tropism
Diversification of antiretroviral factors during host evolution has erected formidable barriers to cross-species retrovirus transmission. This phenomenon likely protects humans from infection by many modern retroviruses, but it has also impaired the development of primate models of HIV-1 infection. Indeed, rhesus macaques are resistant to HIV-1, in part due to restriction imposed by the TRIM5α protein (rhTRIM5α). Initially, we attempted to derive rhTRIM5α-resistant HIV-1 strains using two strategies. First, HIV-1 was passaged in engineered human cells expressing rhTRIM5α. Second, a library of randomly mutagenized capsid protein (CA) sequences was screened for mutations that reduced rhTRIM5α sensitivity. Both approaches identified several individual mutations in CA that reduced rhTRIM5α sensitivity. However, neither approach yielded mutants that were fully resistant, perhaps because the locations of the mutations suggested that TRIM5α recognizes multiple determinants on the capsid surface. Moreover, even though additive effects of various CA mutations on HIV-1 resistance to rhTRIM5α were observed, combinations that gave full resistance were highly detrimental to fitness. Therefore, we employed an 'assisted evolution' approach in which individual CA mutations that reduced rhTRIM5α sensitivity without fitness penalties were randomly assorted in a library of viral clones containing synthetic CA sequences. Subsequent passage of the viral library in rhTRIM5α-expressing cells resulted in the selection of individual viral species that were fully fit and resistant to rhTRIM5α. These viruses encoded combinations of five mutations in CA that conferred complete or near complete resistance to the disruptive effects of rhTRIM5α on incoming viral cores, by abolishing recognition of the viral capsid. Importantly, HIV-1 variants encoding these CA substitutions and SIVmac239 Vif replicated efficiently in primary rhesus macaque lymphocytes. These findings demonstrate that rhTRIM5α is difficult to but not impossible to evade, and doing so should facilitate the development of primate models of HIV-1 infection
Novel Escape Mutants Suggest an Extensive TRIM5α Binding Site Spanning the Entire Outer Surface of the Murine Leukemia Virus Capsid Protein
After entry into target cells, retroviruses encounter the host restriction
factors such as Fv1 and TRIM5α. While it is clear that these factors target
retrovirus capsid proteins (CA), recognition remains poorly defined in the
absence of structural information. To better understand the binding interaction
between TRIM5α and CA, we selected a panel of novel N-tropic murine
leukaemia virus (N-MLV) escape mutants by a serial passage of replication
competent N-MLV in rhesus macaque TRIM5α (rhTRIM5α)-positive cells using
a small percentage of unrestricted cells to allow multiple rounds of virus
replication. The newly identified mutations, many of which involve changes in
charge, are distributed over the outer ‘top’ surface of N-MLV CA,
including the N-terminal β-hairpin, and map up to 29 Ao apart.
Biological characterisation with a number of restriction factors revealed that
only one of the new mutations affects restriction by human TRIM5α,
indicating significant differences in the binding interaction between N-MLV and
the two TRIM5αs, whereas three of the mutations result in dual sensitivity
to Fv1n and Fv1b. Structural studies of two mutants show
that no major changes in the overall CA conformation are associated with escape
from restriction. We conclude that interactions involving much, if not all, of
the surface of CA are vital for TRIM5α binding
The natural history of primary sclerosing cholangitis in 781 children. A multicenter, international collaboration
There are limited data on the natural history of primary sclerosing cholangitis (PSC) in children. We aimed to describe the disease characteristics and long-term outcomes of pediatric PSC. We retrospectively collected all pediatric PSC cases from 36 participating institutions and conducted a survival analysis from the date of PSC diagnosis to dates of diagnosis of portal hypertensive or biliary complications, cholangiocarcinoma, liver transplantation, or death. We analyzed patients grouped by disease phenotype and laboratory studies at diagnosis to identify objective predictors of long-term outcome. We identified 781 patients, median age 12 years, with 4,277 person-years of follow-up; 33% with autoimmune hepatitis, 76% with inflammatory bowel disease, and 13% with small duct PSC. Portal hypertensive and biliary complications developed in 38% and 25%, respectively, after 10 years of disease. Once these complications developed, median survival with native liver was 2.8 and 3.5 years, respectively. Cholangiocarcinoma occurred in 1%. Overall event-free survival was 70% at 5 years and 53% at 10 years. Patient groups with the most elevated total bilirubin, gamma-glutamyltransferase, and aspartate aminotransferase-to-platelet ratio index at diagnosis had the worst outcomes. In multivariate analysis PSC-inflammatory bowel disease and small duct phenotypes were associated with favorable prognosis (hazard ratios 0.6, 95% confidence interval 0.5-0.9, and 0.7, 95% confidence interval 0.5-0.96, respectively). Age, gender, and autoimmune hepatitis overlap did not impact long-term outcome.
CONCLUSION:
PSC has a chronic, progressive course in children, and nearly half of patients develop an adverse liver outcome after 10 years of disease; elevations in bilirubin, gamma-glutamyltransferase, and aspartate aminotransferase-to-platelet ratio index at diagnosis can identify patients at highest risk; small duct PSC and PSC-inflammatory bowel disease are more favorable disease phenotypes
- …