5,194 research outputs found
A vortex model for transport in the polar stratosphere
A semi-empirical model based on a Gaussian vorticity distribution was developed for determining eddy diffusivity and wind transport distributions in the polar stratosphere. The model uses as input data pressure surface heights measured at periods of the year when the stratospheric polar vortex exhibits nearly circular patterns around the pole. The components of the polar wind velocities that result from a Prandtl eddy viscosity distribution are found to be in general agreement with those obtained by other investigators
Three Dimensional Measurements of Asphaltene Deposition in a Transparent Micro-Channel
This study describes a novel experimental approach to directly measure the thicknesses of asphaltene deposits in micro-channels. The thickness of the asphaltene deposit is estimated using a visualization technique based on 3D digital microscopy. The working fluid is a mixture of n-heptane and dead oil. Induced by the addition of n-heptane, the asphaltenes present in crude oil phase separate at ambient temperature to form aggregates of asphaltene-rich phase. Part of the asphaltene aggregates deposit on the walls of the transparent micro-channel. A two-dimensional profile of the deposit across the channel at selected axial sections is measured. The influences of injection mixture volume on the growth of the thickness of deposited asphaltenes is investigated using two experimental conditions, (i) varying elapsed time at constant flow rate and (ii) increasing the flow rate at a constant elapsed time. In both cases the deposit thickness of asphaltene (δ) increases with the total injection volume (V). The experimental results obtained in this work provide new insights into the deposition process at the micro-scale level, which can be used to facilitate the development of more accurate numerical model for this applicatio
Modeling of Two-Phase Flow with Deposition in Vertical Pipes
Deposition is found in many engineering processes,
such as the asphaltene deposition in oil pipelines/wellbores, and biological and chemical foulings in pipes or heat exchangers. These
deposition processes usually occur in a two-phase flow environment. This study develops a model for two-phase flow with deposition in vertical pipes. The model consists of three modules: Fluid Transport, Particle Transport, and Particle Deposition. The Fluid Transport module predicts the fluids’ velocities and pressure. The Particle
Transport module calculates the particle distribution. The Particle Deposition module models the actual attachment of particles onto the
wall. The model is verified against a few limiting cases with analytical solutions. Then, it is validated against experimental data for two-phase flow without deposition. Demonstration of the model for bubbly flow with deposition is performe
Integrated One-Dimensional Modeling of Asphaltene Deposition in Wellbores/Pipelines
—Asphaltene deposition in wellbores/pipelines causes serious production losses in the oil and gas industry. This work presents a numerical model to predict asphaltene deposition in
wellbores/pipelines. This model consists of two modules: a Thermodynamic Module and a Transport Module. The Thermodynamic Module models asphaltene precipitation using the Peng-Robinson Equation of State with Peneloux volume translation (PR-Peneloux EOS). The Transport Module covers the modeling of fluid transport, asphaltene particle transport and asphaltene deposition. These
modules are combined via a thermodynamic properties lookup-table generated by the Thermodynamic Module prior to simulation. In this
work, the Transport Module and the Thermodynamic Module are first verified and validated separately. Then, the integrated model is
applied to an oilfield case with asphaltene deposition problem where a reasonably accurate prediction of asphaltene deposit profile is
achieve
Prediction of the amount of PCA for mechanical milling
Abstract Process control agent (PCA) can strongly in¯uence the size of ball milled powder particles. Experimental results show that the mean particle size is affected by: (1) the types of the PCA, (2) the amount of PCA, and (3) the milling duration. Two kinds of materials, namely Al and Mg, were used in the experiment and analysis of the in¯uence of process control agent. It was found that there is a critical amount of process control agent below which the size of the powder particles tends to increase and above which it tends to decrease. In order to predict the amount of PCA required for a particular mean particle size under a particular milling duration resulting from a particular mechanical alloying process, a back-propagation neural network is employed. For each combination of base material and PCA, a neural network is trained using experimental data to achieve the correlation between the amount of PCA and a given particle size under a particular milling duration, i.e., PCA amountf(particle size, milling duration). The testing results show that the trained networks have a fairly good generalization capability # 1999 Elsevier Science S.A. All rights reserved
Electrocardiographic markers of structural heart disease and predictors of death in 2332 unselected patients undergoing outpatient Holter recording
To test the hypothesis that the QS interval of ventricular ectopic beats (VEBs) (ventricular ectopic QS interval, VEQSI) would provide a marker for the presence of structural heart disease and a predictor of mortality
Effectiveness and tolerability of pegylated interferon alfa-2b in combination with ribavirin for treatment of chronic hepatitis C: the PegIntrust Study
Background and study aims : Large international clinical trials conducted in the past 5 years rapidly improved the treatment of chronic hepatitis C; however, it is unclear whether the advances seen in clinical trials are being paralleled by similar improvements in routine clinical practice. PegIntrust is a Belgian community-based trial evaluating the sustained virological response.
Patients and Methods : Observational study of 219 patients receiving pegylated interferon alfa-2b (1.5 mu g/kg/wk) and weight. based ribavirin (800-1200 mg/day) for 48 weeks. Primary study end point was sustained virological response (SVR), defined as undetectable HCV RNA 6 months after the completion of treatment.
Results : In total, 108 patients (49.3 %) had undetectable HCV RNA at the end of therapy, 91(41.6%) attaining SVR. Of the 111 patients without an end-of-treatment response, 28 were non-responders, and 21 had virological breakthrough. In total, 134 patients attained early virological response (EVR); 88 (65.7%) of those patients attained SVR. In contrast, 82 (96.5 %) of the 85 patients who did not attain EVR also did not attain SVR. Age, fibrosis score and baseline viral load were identified as important predictors of treatment outcome. The most frequently reported serious adverse events resulting in treatment discontinuation were anemia (n = 10), fatigue/asthenia/malaise (n = 6) and fever (n = 3).
Conclusion : Our data indicate that treatment of chronic hepatitis C with PEG-IFN alfa-2b plus weight-based ribavirin results in favourable treatment outcomes in a Belgian cohort of patients treated in community-based clinical practice. (Ada gastroenterol. belg., 2010, 73, 5-11)
Rhesus TRIM5α disrupts the HIV-1 capsid at the inter-hexamer interfaces
TRIM proteins play important roles in the innate immune defense against retroviral infection, including human immunodeficiency virus type-1 (HIV-1). Rhesus macaque TRIM5α (TRIM5αrh) targets the HIV-1 capsid and blocks infection at an early post-entry stage, prior to reverse transcription. Studies have shown that binding of TRIM5α to the assembled capsid is essential for restriction and requires the coiled-coil and B30.2/SPRY domains, but the molecular mechanism of restriction is not fully understood. In this study, we investigated, by cryoEM combined with mutagenesis and chemical cross-linking, the direct interactions between HIV-1 capsid protein (CA) assemblies and purified TRIM5αrh containing coiled-coil and SPRY domains (CC-SPRYrh). Concentration-dependent binding of CC-SPRYrh to CA assemblies was observed, while under equivalent conditions the human protein did not bind. Importantly, CC-SPRYrh, but not its human counterpart, disrupted CA tubes in a non-random fashion, releasing fragments of protofilaments consisting of CA hexamers without dissociation into monomers. Furthermore, such structural destruction was prevented by inter-hexamer crosslinking using P207C/T216C mutant CA with disulfide bonds at the CTD-CTD trimer interface of capsid assemblies, but not by intra-hexamer crosslinking via A14C/E45C at the NTD-NTD interface. The same disruption effect by TRIM5αrh on the inter-hexamer interfaces also occurred with purified intact HIV-1 cores. These results provide insights concerning how TRIM5α disrupts the virion core and demonstrate that structural damage of the viral capsid by TRIM5α is likely one of the important components of the mechanism of TRIM5α-mediated HIV-1 restriction. © 2011 Zhao et al
Conjugate Heat Transfer in Stratified Two-Fluid Flows with a Growing Deposit Layer
The article presents a numerical model for moving boundary conjugate heat transfer in stratified two-fluid flows with a growing deposit layer. The model is applicable to other general moving boundary conjugate heat transfer problem in a two-fluid flow environment with deposition occurring simultaneously. The level-set method is adopted to capture the fluid-fluid interface and fluid-deposit interface. The governing equations are solved using a finite volume method. Upon verification of the model, the effects of inlet velocity ratio, Damköhler number and thermal conductivity ratio on the flow, deposition as well as heat transfer are investigated. Generally, Nusselt number on the lower wall (with a growing deposit layer), Nulx and upper wall, Nuux show distinct features with the change of these parameters. Nuux increases with the increase of lower fluid layer (fluid 1) inlet velocity and the thermal conductivity of deposit layer while it decreases with the increase of Damkholer number. Nulx varies differently in the upstream and the downstream of the channel. A higher lower fluid layer (fluid 1) velocity and a higher thermal conductivity of deposit layer result in a higher Nulx upstream but a lower Nulx downstream. However, a higher Damkholer number results in a lower Nulx upstream and a higher Nulx downstream
Mitigation of a prospective association between early language delay at toddlerhood and ADHD among bilingual preschoolers: Evidence from the GUSTO Cohort
National Research Foundation (NRF) Singapore under its Translational and Clinical Research (TCR) Flagship Programm
- …