3 research outputs found

    Experimental investigation of low salinity water flooding to improve viscous oil recovery from the Schrader Bluff Reservoir on Alaska North Slope

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2018Alaska's North Slope (ANS) contains vast resources of viscous oil that have not been developed efficiently using conventional water flooding. Although thermal methods are most commonly applied to recover viscous oil, they are impractical on ANS because of the concern of thawing the permafrost, which could cause disastrous environmental damage. Recently, low salinity water flooding (LSWF) has been considered to enhance oil recovery by reducing residual oil saturation in the Schrader Bluff viscous oil reservoir. In this study, lab experiments have been conducted to investigate the potential of LSWF to improve heavy oil recovery from the Schrader Bluff sand. Fresh-state core plugs cut from preserved core samples with original oil saturations have been flooded sequentially with high salinity water, low salinity water, and softened low salinity water. The cumulative oil production and pressure drops have been recorded, and the oil recovery factors and residual oil saturation after each flooding have been determined based on material balance. In addition, restored-state core plugs saturated with viscous oil have been employed to conduct unsteady-state displacement experiments to measure the oil-water relative permeabilities using high salinity water and low salinity water, respectively. The emulsification of provided viscous oil and low salinity water has also been investigated. Furthermore, the contact angles between the crude oil and reservoir rock have been measured. It has been found that the core plugs are very unconsolidated, with porosity and absolute permeability in the range of 33% to 36% and 155 mD to 330 mD, respectively. A produced crude oil sample having a viscosity of 63 cP at ambient conditions was used in the experiments. The total dissolved solids (TDS) of the high salinity water and the low salinity water are 28,000 mg/L and 2,940 mg/L, respectively. Softening had little effect on the TDS of the low salinity water, but the concentration of Ca²⁺ was reduced significantly. The residual oil saturations were reduced gradually by applying LSWF and softened LSWF successively after high salinity water flooding. On average, LSWF can improve viscous oil recovery by 6.3% OOIP over high salinity water flooding, while the softened LSWF further enhances the oil recovery by 1.3% OOIP. The pressure drops observed in the LSWF and softened LSWF demonstrate more fluctuation than that in the high salinity water flooding, which indicates potential clay migration in LSWF and softened LSWF. Furthermore, it was found that, regardless of the salinities, the calculated water relative permeabilities are much lower than the typical values in conventional systems, implying more complex reactions between the reservoir rock, viscous oil, and injected water. Mixing the provided viscous oil and low salinity water generates stable water-in-oil (W/O) emulsions. The viscosities of the W/O emulsions made from water-oil ratios of 20:80 and 50:50 are higher than that of the provided viscous oil. Moreover, the contact angle between the crude oil and reservoir rock in the presence of low salinity water is larger than that in the presence of high salinity water, which may result from the wettability change of the reservoir rock by contact with the low salinity water

    Experimental investigation of nonthermal enhanced oil recovery techniques for improving oil recovery on Alaska North Slope

    No full text
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2022Exploitation of viscous and heavy oils on Alaska North Slope (ANS) requires nonthermal enhanced oil recovery (EOR) techniques. Currently, three nonthermal EOR methods, including solvent injection, low salinity water (LSW) flooding, and low salinity polymer (LSP) injection, have been proved to be useful on ANS. ANS viscous and heavy oils can be developed effectively by combining those three nonthermal EOR techniques. In this dissertation, lab experiments have been conducted to investigate the potential of the proposed hybrid nonthermal EOR techniques, including HSW (high salinity water)-LSW-softened LSW flooding, HSW-LSW-LSP flooding, CO₂-enriched LHS (light hydrocarbon solvent)-alternating-LSW flooding, LHS-alternating-LSW flooding, CO₂-enriched LHS (light hydrocarbon solvent)-alternating-LSP flooding, and LHS-alternating-LSP flooding, to improve ANS viscous oil recovery. Besides, the effect of essential clay minerals, including sodium-based montmorillonite (Na-Mt), calcium-based montmorillonite (Ca-Mt), illite, and kaolinite, on LSW flooding has been examined. In addition, the CO₂ influence on solvent-alternating-LSP flooding in enhancing ANS viscous oil recovery has been investigated. Furthermore, the blockage issue during CO₂-enriched LHS-alternating-LSP flooding has been investigated, and its solution has been proposed and analyzed. The EOR potential of the proposed hybrid EOR techniques has been evaluated by conducting coreflooding experiments. Additionally, relative permeability, swelling property, zeta potential, interfacial tension (IFT), and pressure-volume-temperature (PVT) tests have been conducted to reveal the EOR mechanisms of the proposed hybrid EOR techniques. Moreover, water ion analysis of DI-water/natural-sand and DI-water/natural-sand/CO₂ systems has been carried out to reveal the complex reaction between CO₂, sand, and LSP solution. It was found that, compared to conventional waterflooding, all the proposed hybrid EOR techniques could result in better oil recovery potential. It was noticed that the presence of CO₂ in LHS could be more beneficial to the solvent-alternating-LSW/LSP flooding processes during the 1st cycle due to the greater effectiveness of oil viscosity reduction. In particular, severe blockage issue occurred when conducting CO₂-enriched LHS-alternating-LSP flooding using sand pack due to the polymer precipitation. Additionally, the calculated water relative permeabilities are much lower than the typical values, implying more complex interactions between the reservoir rock, heavy oil, and injected water. Moreover, comparing to HSW, LSW could further swell Na-Mt significantly, which may benefit LSW flooding by improving sweep efficiency since in-situ swelling of Na-Mt has the potential to block the higher permeable water-flooded zone and divert the injected brine to lower permeable and unswept area. Comparing to Na-Mt, LSW couldn't swell Ca-Mt and illite further, whereas kaolinite was incapable of swelling in both HSW and LSW. Furthermore, about 60 mole% of solvent could be dissolved into the ANS viscous oil at target reservoir condition, resulting in oil swelling and viscosity reduction effects, which provided better microscopic displacement efficiency. Although the presence of CO₂ in LHS had a negative impact on the oil swelling effect, the influence on the oil viscosity reduction was positive. In addition, reducing the salinity of water could generate more negative zeta potential values on the surface of clay minerals and sand, making it more water wet. Besides, IFT of oil/LSW system is higher than that of oil/HSW system, indicating that IFT reduction is not an EOR mechanism of LSW flooding in our proposed hybrid EOR techniques. Additionally, after introducing CO₂ to the DIwater/natural-sand system, the concentration of multivalent cations was increased, which may be responsible for the polymer precipitation. The blockage issue could be solved by injecting LSW as a spacer between CO₂-enriched LHS injection and LSP injection.Chapter 1. Introduction -- Chapter 2. Experimental investigation of low salinity waterflooding to improve heavy oil recovery from the Schrader Bluff Reservoir on Alaska North Slope -- Chapter 3. A comprehensive laboratory assessment of the effects of clay minerals in low salinity waterflooding -- Chapter 4. An experimental study of improving viscous oil recovery by employing hybrid EOR techniques: a case study of Alaska North Slope reservoir -- Chapter 5. A laboratory investigation of CO₂ influence on solvent-assisted polymer flooding for improving viscous oil recovery on Alaska North Slope -- Chapter 6. Basic criteria of field application and screening of candidate reservoirs -- Chapter 7. Conclusion and recommendation

    Study of Supercritical State Characteristics of Miscible CO<sub>2</sub> Used in the Flooding Process

    No full text
    Carbon dioxide flooding is a strategic replacement technology for greatly enhancing oil recovery in low-permeability oilfields, which includes social benefits resulting from carbon emission reduction and economic benefits owing to the improvement of oil recovery. Therefore, it is of great significance to develop and apply the technology of CO2 flooding and storage in the petroleum industry. In reservoir conditions, CO2 is usually under a supercritical state, presenting both low viscosity and high diffusivity of a gaseous state and high density of a liquid state. The special phase behavior of CO2 directly affects its extraction capacity, resulting in the change of miscible behavior between CO2 and crude oil. In this paper, the ultra-high-pressure–high-temperature pressure–volume–temperature (PVT) system was used to evaluate the phase characteristics of CO2 during the process of reservoir development. The phase behaviors of the CO2/CH4/N2 crude oil system were compared and analyzed. Moreover, the matching mechanism between supercritical CO2 characteristics and oil–gas system miscibility was investigated and defined. This work deepened the understanding of the phase characteristics of CO2 in the process of miscible flooding, providing both theoretical guidance for the application of CO2 injection on oilfields and the essential scientific basis for the implementation of CCUS-EOR technology
    corecore