169 research outputs found

    ODN: Opening the Deep Network for Open-set Action Recognition

    Full text link
    In recent years, the performance of action recognition has been significantly improved with the help of deep neural networks. Most of the existing action recognition works hold the \textit{closed-set} assumption that all action categories are known beforehand while deep networks can be well trained for these categories. However, action recognition in the real world is essentially an \textit{open-set} problem, namely, it is impossible to know all action categories beforehand and consequently infeasible to prepare sufficient training samples for those emerging categories. In this case, applying closed-set recognition methods will definitely lead to unseen-category errors. To address this challenge, we propose the Open Deep Network (ODN) for the open-set action recognition task. Technologically, ODN detects new categories by applying a multi-class triplet thresholding method, and then dynamically reconstructs the classification layer and "opens" the deep network by adding predictors for new categories continually. In order to transfer the learned knowledge to the new category, two novel methods, Emphasis Initialization and Allometry Training, are adopted to initialize and incrementally train the new predictor so that only few samples are needed to fine-tune the model. Extensive experiments show that ODN can effectively detect and recognize new categories with little human intervention, thus applicable to the open-set action recognition tasks in the real world. Moreover, ODN can even achieve comparable performance to some closed-set methods.Comment: 6 pages, 3 figures, ICME 201

    KERM: Knowledge Enhanced Reasoning for Vision-and-Language Navigation

    Full text link
    Vision-and-language navigation (VLN) is the task to enable an embodied agent to navigate to a remote location following the natural language instruction in real scenes. Most of the previous approaches utilize the entire features or object-centric features to represent navigable candidates. However, these representations are not efficient enough for an agent to perform actions to arrive the target location. As knowledge provides crucial information which is complementary to visible content, in this paper, we propose a Knowledge Enhanced Reasoning Model (KERM) to leverage knowledge to improve agent navigation ability. Specifically, we first retrieve facts (i.e., knowledge described by language descriptions) for the navigation views based on local regions from the constructed knowledge base. The retrieved facts range from properties of a single object (e.g., color, shape) to relationships between objects (e.g., action, spatial position), providing crucial information for VLN. We further present the KERM which contains the purification, fact-aware interaction, and instruction-guided aggregation modules to integrate visual, history, instruction, and fact features. The proposed KERM can automatically select and gather crucial and relevant cues, obtaining more accurate action prediction. Experimental results on the REVERIE, R2R, and SOON datasets demonstrate the effectiveness of the proposed method.Comment: Accepted by CVPR 2023. The code is available at https://github.com/XiangyangLi20/KER

    Benign Shortcut for Debiasing: Fair Visual Recognition via Intervention with Shortcut Features

    Full text link
    Machine learning models often learn to make predictions that rely on sensitive social attributes like gender and race, which poses significant fairness risks, especially in societal applications, such as hiring, banking, and criminal justice. Existing work tackles this issue by minimizing the employed information about social attributes in models for debiasing. However, the high correlation between target task and these social attributes makes learning on the target task incompatible with debiasing. Given that model bias arises due to the learning of bias features (\emph{i.e}., gender) that help target task optimization, we explore the following research question: \emph{Can we leverage shortcut features to replace the role of bias feature in target task optimization for debiasing?} To this end, we propose \emph{Shortcut Debiasing}, to first transfer the target task's learning of bias attributes from bias features to shortcut features, and then employ causal intervention to eliminate shortcut features during inference. The key idea of \emph{Shortcut Debiasing} is to design controllable shortcut features to on one hand replace bias features in contributing to the target task during the training stage, and on the other hand be easily removed by intervention during the inference stage. This guarantees the learning of the target task does not hinder the elimination of bias features. We apply \emph{Shortcut Debiasing} to several benchmark datasets, and achieve significant improvements over the state-of-the-art debiasing methods in both accuracy and fairness.Comment: arXiv admin note: text overlap with arXiv:2211.0125

    MixBCT: Towards Self-Adapting Backward-Compatible Training

    Full text link
    The exponential growth of data, alongside advancements in model structures and loss functions, has necessitated the enhancement of image retrieval systems through the utilization of new models with superior feature embeddings. However, the expensive process of updating the old retrieval database by replacing embeddings poses a challenge. As a solution, backward-compatible training can be employed to avoid the necessity of updating old retrieval datasets. While previous methods achieved backward compatibility by aligning prototypes of the old model, they often overlooked the distribution of the old features, thus limiting their effectiveness when the old model's low quality leads to a weakly discriminative feature distribution. On the other hand, instance-based methods like L2 regression take into account the distribution of old features but impose strong constraints on the performance of the new model itself. In this paper, we propose MixBCT, a simple yet highly effective backward-compatible training method that serves as a unified framework for old models of varying qualities. Specifically, we summarize four constraints that are essential for ensuring backward compatibility in an ideal scenario, and we construct a single loss function to facilitate backward-compatible training. Our approach adaptively adjusts the constraint domain for new features based on the distribution of the old embeddings. We conducted extensive experiments on the large-scale face recognition datasets MS1Mv3 and IJB-C to verify the effectiveness of our method. The experimental results clearly demonstrate its superiority over previous methods. Code is available at https://github.com/yuleung/MixBC

    Recognizing Conditional Causal Relationships about Emotions and Their Corresponding Conditions

    Full text link
    The study of causal relationships between emotions and causes in texts has recently received much attention. Most works focus on extracting causally related clauses from documents. However, none of these works has considered that the causal relationships among the extracted emotion and cause clauses can only be valid under some specific context clauses. To highlight the context in such special causal relationships, we propose a new task to determine whether or not an input pair of emotion and cause has a valid causal relationship under different contexts and extract the specific context clauses that participate in the causal relationship. Since the task is new for which no existing dataset is available, we conduct manual annotation on a benchmark dataset to obtain the labels for our tasks and the annotations of each context clause's type that can also be used in some other applications. We adopt negative sampling to construct the final dataset to balance the number of documents with and without causal relationships. Based on the constructed dataset, we propose an end-to-end multi-task framework, where we design two novel and general modules to handle the two goals of our task. Specifically, we propose a context masking module to extract the context clauses participating in the causal relationships. We propose a prediction aggregation module to fine-tune the prediction results according to whether the input emotion and causes depend on specific context clauses. Results of extensive comparative experiments and ablation studies demonstrate the effectiveness and generality of our proposed framework

    ShuffleMix: Improving Representations via Channel-Wise Shuffle of Interpolated Hidden States

    Full text link
    Mixup style data augmentation algorithms have been widely adopted in various tasks as implicit network regularization on representation learning to improve model generalization, which can be achieved by a linear interpolation of labeled samples in input or feature space as well as target space. Inspired by good robustness of alternative dropout strategies against over-fitting on limited patterns of training samples, this paper introduces a novel concept of ShuffleMix -- Shuffle of Mixed hidden features, which can be interpreted as a kind of dropout operation in feature space. Specifically, our ShuffleMix method favors a simple linear shuffle of randomly selected feature channels for feature mixup in-between training samples to leverage semantic interpolated supervision signals, which can be extended to a generalized shuffle operation via additionally combining linear interpolations of intra-channel features. Compared to its direct competitor of feature augmentation -- the Manifold Mixup, the proposed ShuffleMix can gain superior generalization, owing to imposing more flexible and smooth constraints on generating samples and achieving regularization effects of channel-wise feature dropout. Experimental results on several public benchmarking datasets of single-label and multi-label visual classification tasks can confirm the effectiveness of our method on consistently improving representations over the state-of-the-art mixup augmentation
    corecore