45 research outputs found

    Rethinking Domain Generalization for Face Anti-spoofing: Separability and Alignment

    Full text link
    This work studies the generalization issue of face anti-spoofing (FAS) models on domain gaps, such as image resolution, blurriness and sensor variations. Most prior works regard domain-specific signals as a negative impact, and apply metric learning or adversarial losses to remove them from feature representation. Though learning a domain-invariant feature space is viable for the training data, we show that the feature shift still exists in an unseen test domain, which backfires on the generalizability of the classifier. In this work, instead of constructing a domain-invariant feature space, we encourage domain separability while aligning the live-to-spoof transition (i.e., the trajectory from live to spoof) to be the same for all domains. We formulate this FAS strategy of separability and alignment (SA-FAS) as a problem of invariant risk minimization (IRM), and learn domain-variant feature representation but domain-invariant classifier. We demonstrate the effectiveness of SA-FAS on challenging cross-domain FAS datasets and establish state-of-the-art performance.Comment: Accepted in CVPR202

    ChatGPT is a Knowledgeable but Inexperienced Solver: An Investigation of Commonsense Problem in Large Language Models

    Full text link
    Large language models (LLMs) such as ChatGPT and GPT-4 have made significant progress in NLP. However, their ability to memorize, represent, and leverage commonsense knowledge has been a well-known pain point for LLMs. It remains unclear that: (1) Can GPTs effectively answer commonsense questions? (2) Are GPTs knowledgeable in commonsense? (3) Are GPTs aware of the underlying commonsense knowledge for answering a specific question? (4) Can GPTs effectively leverage commonsense for answering questions? To evaluate the above commonsense problems, we conduct a series of experiments to evaluate ChatGPT's commonsense abilities, and the experimental results show that: (1) GPTs can achieve good QA accuracy in commonsense tasks, while they still struggle with certain types of knowledge. (2) ChatGPT is knowledgeable, and can accurately generate most of the commonsense knowledge using knowledge prompts. (3) Despite its knowledge, ChatGPT is an inexperienced commonsense problem solver, which cannot precisely identify the needed commonsense knowledge for answering a specific question, i.e., ChatGPT does not precisely know what commonsense knowledge is required to answer a question. The above findings raise the need to investigate better mechanisms for utilizing commonsense knowledge in LLMs, such as instruction following, better commonsense guidance, etc

    Mitigating Large Language Model Hallucinations via Autonomous Knowledge Graph-based Retrofitting

    Full text link
    Incorporating factual knowledge in knowledge graph is regarded as a promising approach for mitigating the hallucination of large language models (LLMs). Existing methods usually only use the user's input to query the knowledge graph, thus failing to address the factual hallucination generated by LLMs during its reasoning process. To address this problem, this paper proposes Knowledge Graph-based Retrofitting (KGR), a new framework that incorporates LLMs with KGs to mitigate factual hallucination during the reasoning process by retrofitting the initial draft responses of LLMs based on the factual knowledge stored in KGs. Specifically, KGR leverages LLMs to extract, select, validate, and retrofit factual statements within the model-generated responses, which enables an autonomous knowledge verifying and refining procedure without any additional manual efforts. Experiments show that KGR can significantly improve the performance of LLMs on factual QA benchmarks especially when involving complex reasoning processes, which demonstrates the necessity and effectiveness of KGR in mitigating hallucination and enhancing the reliability of LLMs
    corecore