4 research outputs found

    Selection of Effective GCM Bias Correction Methods and Evaluation of Hydrological Response under Future Climate Scenarios

    No full text
    Global climate change is presenting a variety of challenges to hydrology and water resources because it strongly affects the hydrologic cycle, runoff, and water supply and demand. In this study, we assessed the effects of climate change scenarios on hydrological variables (i.e., evapotranspiration and runoff) by linking the outputs from the global climate model (GCM) with the Soil and Water Assessment Tool (SWAT) for a case study in the Lijiang River Basin, China. We selected a variety of bias correction methods and their combinations to correct the lower resolution GCM outputs of both precipitation and temperature. Then, the SWAT model was calibrated and validated using the observed flow data and corrected historical GCM with the optimal correction method selected. Hydrological variables were simulated using the SWAT model under emission scenarios RCP2.6, RCP4.5, and RCP8.5. The results demonstrated that correcting methods have a positive effect on both daily precipitation and temperature, and a hybrid method of bias correction contributes to increased performance in most cases and scenarios. Based on the bias corrected scenarios, precipitation annual average, temperature, and evapotranspiration will increase. In the case of precipitation and runoff, projection scenarios show an increase compared with the historical trends, and the monthly distribution of precipitation, evapotranspiration, and runoff shows an uneven distribution compared with baseline. This study provides an insight on how to choose a proper GCM and bias correction method and a helpful guide for local water resources management

    An Improved Xin’anjiang Hydrological Model for Flood Simulation Coupling Snowmelt Runoff Module in Northwestern China

    No full text
    The Xin’anjiang hydrological model (XHM) is the practical tool for runoff simulation and flood forecasting in most regions in China, but it still presents some challenges when applied to Northwest China, where the river runoff mostly comes from high-temperature snowmelt, as the model lacks such a functional module. In this study, the improved XHM coupling snowmelt module is presented to complete the existing XHM for better suitability for flood simulation in areas dominated by snowmelt. The improved model includes four sub-models: evapotranspiration, runoff yield, runoff separation, and runoff routing, where the snowmelt runoff module is introduced in both the runoff yield and separation sub-models. The watershed is divided into two types, non-snow areas with lower altitudes and snow-covered areas with higher altitudes, to study the mechanism of runoff production and separation. The evaluation index, determination coefficients (R2), mean square error (MSE), and Nash efficiency coefficients (NSE) are used to assess the improved XHM’s effect by comparing it with the traditional model. Results show that the R2 of the improved XHM coupled with snowmelt are around 0.7 and 0.8 at the Zamashk and Yingluoxia stations, respectively, while the MSE and NSE are also under 0.4 and above 0.6, respectively. The absolute value of error of both flood peaks in the Yingluoxia station simulated by improved XHM is only 10% and 6%, and that of traditional XHM is 32% and 40%, indicating that the peak flow and flood process can be well simulated and showing that the improved XHM coupled with snowmelt constructed in this paper can be applied to the flood forecasting of the Heihe River Basin. The critical temperature of snow melting and degree-day factor of snow are more sensitive compared with other parameters related to snow melting, and the increasing trend of peak flow caused by both decreased critical temperature and increased degree-day factor occurs only when the value of the model’s state (snow reserve) is higher. These results can expand the application scope in snow-dominated areas of the XHM, providing certain technical references for flood forecasting and early warning of other snowmelt-dominated river basins

    An Optimal Allocation Model for Large Complex Water Resources System Considering Water supply and Ecological Needs

    No full text
    Water resources are very important to support the socio-economic development and maintain environmental health, which is a typical issue in water resources management. In this study, we developed an optimal allocation model for a large complex system of water resources by considering both water supply and river ecological benefits. The water supply benefit is defined as the minimum water deficit for different water users, while the ecological benefit involves making the reservoir release as close as possible to the natural streamflow. To solve this problem, the combination of decomposition-coordination (DC) and discrete differential dynamic programming (DDDP) methods were proposed. The proposed methods first decomposed a large system with multi-objective programming into subsystems, and the optimal solution of each subsystem was accomplished by the DDDP method to solve the system efficiently. Then the subsystems’ solutions were coordinated to figure out the near global optimal solution. The proposed models were tested in the Lingui and Yongfu County, Guilin City in China. Results show that the optimal reservoir release is close to the natural flow regime and there is a slight water deficit ratio in both level years. The water supply objective is more sensitive to the system model compared with the ecological objective, and the result of water allocation is optimized when the reservoir release is as close as possible to the natural flow based on the minimum water deficit. The proposed system model could facilitate sustainable water use and provide technical support for water resources management in economic development
    corecore