27,733 research outputs found

    Optimization on fixed low latency implementation of GBT protocol in FPGA

    Full text link
    In the upgrade of ATLAS experiment, the front-end electronics components are subjected to a large radiation background. Meanwhile high speed optical links are required for the data transmission between the on-detector and off-detector electronics. The GBT architecture and the Versatile Link (VL) project are designed by CERN to support the 4.8 Gbps line rate bidirectional high-speed data transmission which is called GBT link. In the ATLAS upgrade, besides the link with on-detector, the GBT link is also used between different off-detector systems. The GBTX ASIC is designed for the on-detector front-end, correspondingly for the off-detector electronics, the GBT architecture is implemented in Field Programmable Gate Arrays (FPGA). CERN launches the GBT-FPGA project to provide examples in different types of FPGA. In the ATLAS upgrade framework, the Front-End LInk eXchange (FELIX) system is used to interface the front-end electronics of several ATLAS subsystems. The GBT link is used between them, to transfer the detector data and the timing, trigger, control and monitoring information. The trigger signal distributed in the down-link from FELIX to the front-end requires a fixed and low latency. In this paper, several optimizations on the GBT-FPGA IP core are introduced, to achieve a lower fixed latency. For FELIX, a common firmware will be used to interface different front-ends with support of both GBT modes: the forward error correction mode and the wide mode. The modified GBT-FPGA core has the ability to switch between the GBT modes without FPGA reprogramming. The system clock distribution of the multi-channel FELIX firmware is also discussed in this paper

    Commanding Wheelchair in Virtual Reality with Thoughts by Multiclass BCI based on Movement-related Cortical Potentials

    Get PDF
    Brain-driven wheelchair control is an attractive application in theBrain-Computer Interface (BCI) field. In this research, wedesigned and validated a virtual wheelchair navigation systemcontrolled by our latest multiclass BCI Menu interface based on afast brain switch, which provides five commands: move forward,turn left, turn right, move backward, and stop. Preliminary resultshave shown that subjects can successfully control the wheelchairto hit all targets in the immersive virtual reality (VR)environment. This system proves an avenue to bridge the gapbetween simulation control in VR environments and real-lifewheelchair applications for mobility impairment
    corecore