29,176 research outputs found
In-plane thermal conductivity of large single crystals of Sm-substituted (YSm)BaCuO
We have investigated the in-plane thermal conductivity of
large single crystals of optimally oxygen-doped
(Y,Sm)BaCuO (=0, 0.1, 0.2 and 1.0)
and YBa(CuZn)O(=0.0071) as functions
of temperature and magnetic field (along the c axis). For comparison, the
temperature dependence of for as-grown crystals with the
corresponding compositions are presented.
The nonlinear field dependence of for all crystals was observed
at relatively low fields near a half of . We make fits of the
data to an electron contribution model, providing both the mean
free path of quasiparticles and the electronic thermal conductivity
, in the absence of field. The local lattice distortion due to the
Sm substitution for Y suppresses both the phonon and electron contributions. On
the other hand, the light Zn doping into the CuO planes affects solely
the electron component below , resulting in a substantial decrease in
.Comment: 7 pages,4 figures,1 tabl
Influence of low-level Pr substitution on the superconducting properties of YBa2Cu3O7-delta single crystals
We report on measurements on Y1-xPrxBa2Cu3O7-delta single crystals, with x
varying from 0 to 2.4%. The upper and the lower critical fields, Hc2 and Hc1,
the Ginzburg-Landau parameter and the critical current density, Jc(B), were
determined from magnetization measurements and the effective media approach
scaling method. We present the influence of Pr substitution on the pinning
force density as well as on the trapped field profiles analyzed by Hall probe
scanning.Comment: 4 pages, 5 figures, accepted for publication in J. Phys. Conf. Se
A model of rotating hotspots for 3:2 frequency ratio of HFQPOs in black hole X-ray binaries
We propose a model to explain a puzzling 3:2 frequency ratio of high
frequency quasi-periodic oscillations (HFQPOs) in black hole (BH) X-ray
binaries, GRO J1655-40, GRS 1915+105 and XTE J1550-564. In our model a
non-axisymmetric magnetic coupling (MC) of a rotating black hole (BH) with its
surrounding accretion disc coexists with the Blandford-Znajek (BZ) process. The
upper frequency is fitted by a rotating hotspot near the inner edge of the
disc, which is produced by the energy transferred from the BH to the disc, and
the lower frequency is fitted by another rotating hotspot somewhere away from
the inner edge of the disc, which arises from the screw instability of the
magnetic field on the disc. It turns out that the 3:2 frequency ratio of HFQPOs
in these X-ray binaries could be well fitted to the observational data with a
much narrower range of the BH spin. In addition, the spectral properties of
HFQPOs are discussed. The correlation of HFQPOs with jets from microquasars is
contained naturally in our model.Comment: 8 pages, 4 figures. accepted by MNRA
Unimpeded tunneling in graphene nanoribbons
We studied the Klein paradox in zigzag (ZNR) and anti-zigzag (AZNR) graphene
nanoribbons. Due to the fact that ZNR (the number of lattice sites across the
nanoribbon (N is even) and AZNR (N is odd) configurations are indistinguishable
when treated by the Dirac equation, we supplemented the model with a
pseudo-parity operator whose eigenvalues correctly depend on the sublattice
wavefunctions for the number of carbon atoms across the ribbon, in agreement
with the tight-binding model. We have shown that the Klein tunneling in zigzag
nanoribbons is related to conservation of the pseudo-parity rather than
pseudo-spin in infinite graphene. The perfect transmission in the case of
head-on incidence is replaced by perfect transmission at the center of the
ribbon and the chirality is interpreted as the projection of the pseudo-parity
on momentum at different corners of the Brillouin zone
- …