34,132 research outputs found

    A Wake Model for Free-Streamline Flow Theory, Part II. Cavity Flows Past Obstacles of Arbitrary Profile

    Get PDF
    In Part I of this paper a free-streamline wake model was introduced to treat the fully and partially developed wake flow or cavity flow past an oblique flat plate. This theory is generalized here to investigate the cavity flow past an obstacle of arbitrary profile at an arbitrary cavitation number. Consideration is first given to the cavity flow past a polygonal obstacle whose wetted sides may be concave towards the flow and may also possess some gentle convex corners. The general case of curved walls is then obtained by a limiting process. The analysis in this general case leads to a set of two functional equations for which several methods of solution are developed and discussed. As a few typical examples the analysis is carried out in detail for the specific cases of wedges, two-step wedges, flapped hydrofoils, and inclined circular arc plate. For these cases the present theory is found in good agreement with the experimental results available

    A wake model for free-streamline flow theory. Part 2. Cavity flows past obstacles of arbitrary profile

    Get PDF
    In Part 1 of this paper a free-streamline wake model mas introduced to treat the fully and partially developed wake flow or cavity flow past an oblique flat plate. This theory is generalized here to investigate the cavity flow past an obstacle of arbitrary profile at an arbitrary cavitation number. Consideration is first given to the cavity flow past a polygonal obstacle whose wetted sides may be concave towards the flow and may also possess some gentle convex corners. The general case of curved walls is then obtained by a limiting process. The analysis in this general case leads to a set of two funnctional equations for which several methods of solutioii are developed and discussed. As a few typictbl examples the analysis is carried out in detail for the specific cases of wedges, two-step wedges, flapped hydrofoils, and inclined circular arc plates. For these cases the present theory is found to be in good agreement with the experimental results available

    An Approximate Numerical Scheme for the Theory of Cavity Flows Past Obstacles of Arbitrary Profile

    Get PDF
    Recently an exact theory for the cavity flow past an obstacle of arbitrary profile at an arbitrary cavitation number has been developed by adopting a free-streamline wake model. The analysis in this general case leads to a set of two functional equations for which several numerical methods have been devised; some of these methods have already been successfully carried out for several typical cases on a high speed electronic computer. In this paper an approximate numerical scheme, somewhat like an engineering principle, is introduced which greatly shortens the computation of the dual functional equations while still retaining a high degree of accuracy of the numerical result. With such drastic simplification, it becomes feasible to carry out this approximate mrmerical scheme even with a hand computing machine

    Small-Time Behavior of Unsteady Cavity Flows

    Get PDF
    A perturbation theory is applied to investigate the small-time behavior of unsteady cavity flows in which the time-dependent part of the flow may be taken as a small-time expansion superimposed on an established steady cavity flow of an ideal fluid. One purpose of this paper is to study the effect of the initial cavity size on the resulting flow due to a given disturbance. Various existing steady cavity-flow models have been employed for this purpose to evaluate the initial reaction of a cavitated body in an unsteady motion. Furthermore, a physical model is proposed here to give a proper representation of the mechanism by which the cavity volume may be changed with time; the initial hydrodynamic force resulting from such change is calculated based on this model

    The rare decay B --> X_s l^+ l^- to NNLL precision for arbitrary dilepton invariant mass

    Full text link
    We present a new phenomenological analysis of the inclusive rare decay BXs+B \to X_s \ell^+\ell^-. In particular, we present the first calculation of the NNLL contributions due to the leading two-loop matrix elements, evaluated for arbitrary dilepton invariant mass. This allows to obtain the first NNLL estimates of the dilepton mass spectrum and the lepton forward-backward asymmetry in the high M+2 M^2_{\ell^+ \ell^-} region, and to provide an independent check of previously published results in the low M+2 M^2_{\ell^+ \ell^-} region. The numerical impact of these NNLL corrections in the high-mass region (M+2>14.4GeV2 M^2_{\ell^+ \ell^-} > 14.4 GeV^2) amounts to -13% in the integrated rate, and leads to a reduction of the scale uncertainty to ±3\pm 3%. The impact of non-perturbative contributions in this region is also discussed in detail.Comment: 40 pages, 12 figures. v2: extended phenomenological discussion; results unchanged; published versio

    An efficient method for computing the Thouless-Valatin inertia parameters

    Get PDF
    Starting from the adiabatic time-dependent Hartree-Fock approximation (ATDHF), we propose an efficient method to calculate the Thouless-Valatin moments of inertia for the nuclear system. The method is based on the rapid convergence of the expansion of the inertia matrix. The accuracy of the proposed method is verified in the rotational case by comparing the results with the exact Thouless-Valatin moments of inertia calculated using the self-consistent cranking model. The proposed method is computationally much more efficient than the full ATDHF calculation, yet it retains a high accuracy of the order of 1%.Comment: 16 pages, 3 figure

    Transient response under ultrafast interband excitation of an intrinsic graphene

    Full text link
    The transient evolution of carriers in an intrinsic graphene under ultrafast excitation, which is caused by the collisionless interband transitions, is studied theoretically. The energy relaxation due to the quasielastic acoustic phonon scattering and the interband generation-recombination transitions due to thermal radiation are analyzed. The distributions of carriers are obtained for the limiting cases when carrier-carrier scattering is negligible and when the intercarrier scattering imposes the quasiequilibrium distribution. The transient optical response (differential reflectivity and transmissivity) on a probe radiation and transient photoconductivity (response on a weak dc field) appears to be strongly dependent on the relaxation and recombination dynamics of carriers.Comment: 9 pages, 8 figure
    corecore