29,881 research outputs found
MOCVD synthesis of compositionally tuned topological insulator nanowires
Device applications involving topological insulators (TIs) will require the
development of scalable methods for fabricating TI samples with sub-micron
dimensions, high quality surfaces, and controlled compositions. Here we use
Bi-, Se-, and Te-bearing metalorganic precursors to synthesize TIs in the form
of nanowires. Single crystal nanowires can be grown with compositions ranging
from Bi2Se3 to Bi2Te3, including the ternary compound Bi2Te2Se. These high
quality nanostructured TI compounds are suitable platforms for on-going
searches for Majorana Fermions
Pointed Hopf Algebras with classical Weyl Groups
We prove that Nichols algebras of irreducible Yetter-Drinfeld modules over
classical Weyl groups supported by are
infinite dimensional, except in three cases. We give necessary and sufficient
conditions for Nichols algebras of Yetter-Drinfeld modules over classical Weyl
groups supported by to be finite dimensional.Comment: Combined with arXiv:0902.4748 plus substantial changes. To appear
International Journal of Mathematic
Near-linear Time Algorithm for Approximate Minimum Degree Spanning Trees
Given a graph , we wish to compute a spanning tree whose maximum
vertex degree, i.e. tree degree, is as small as possible. Computing the exact
optimal solution is known to be NP-hard, since it generalizes the Hamiltonian
path problem. For the approximation version of this problem, a
time algorithm that computes a spanning tree of degree at most is
previously known [F\"urer \& Raghavachari 1994]; here denotes the
minimum tree degree of all the spanning trees. In this paper we give the first
near-linear time approximation algorithm for this problem. Specifically
speaking, we propose an time algorithm that
computes a spanning tree with tree degree for any constant .
Thus, when , we can achieve approximate solutions with
constant approximate ratio arbitrarily close to 1 in near-linear time.Comment: 17 page
Large anomalous Hall effect in ferromagnetic insulator-topological insulator heterostructures
We demonstrate the van der Waals epitaxy of the topological insulator
compound Bi2Te3 on the ferromagnetic insulator Cr2Ge2Te6. The layers are
oriented with (001) of Bi2Te3 parallel to (001) of Cr2Ge2Te6 and (110) of
Bi2Te3 parallel to (100) of Cr2Ge2Te6. Cross-sectional transmission electron
microscopy indicates the formation of a sharp interface. At low temperatures,
bilayers consisting of Bi2Te3 on Cr2Ge2Te6 exhibit a large anomalous Hall
effect (AHE). Tilted field studies of the AHE indicate that the easy axis lies
along the c-axis of the heterostructure, consistent with magnetization
measurements in bulk Cr2Ge2Te6. The 61 K Curie temperature of Cr2Ge2Te6 and the
use of near-stoichiometric materials may lead to the development of spintronic
devices based on the AHE.Comment: Related papers at http://pettagroup.princeton.ed
Disks around massive young stellar objects: are they common?
We present K-band polarimetric images of several massive young stellar
objects at resolutions 0.1-0.5 arcsec. The polarization vectors around
these sources are nearly centro-symmetric, indicating they are dominating the
illumination of each field. Three out of the four sources show elongated
low-polarization structures passing through the centers, suggesting the
presence of polarization disks. These structures and their surrounding
reflection nebulae make up bipolar outflow/disk systems, supporting the
collapse/accretion scenario as their low-mass siblings. In particular, S140
IRS1 show well defined outflow cavity walls and a polarization disk which
matches the direction of previously observed equatorial disk wind, thus
confirming the polarization disk is actually the circumstellar disk. To date, a
dozen massive protostellar objects show evidence for the existence of disks;
our work add additional samples around MYSOs equivalent to early B-type stars.Comment: 9 pages, including 2 figures, 1 table, to appear on ApJ
Prospects for strangeness measurement in ALICE
The study of strangeness production at LHC will bring significant information
on the bulk chemical properties, its dynamics and the hadronisation mechanisms
involved at these energies. The ALICE experiment will measure strange particles
from topology (secondary vertices) and from resonance decays over a wide range
in transverse momentum and shed light on this new QCD regime. These motivations
will be presented as well as the identification performance of ALICE for
strange hadrons.Comment: 12 pages, 11 figures Proceedings of the Workshop on Relativistic
Nuclear Physics (WRNP) 2007, Kiev, Ukraine Conference Info:
http://wrnp2007.bitp.kiev.ua/ Submitted to "Physics of Atomic Nuclei
Effective Pure States for Bulk Quantum Computation
In bulk quantum computation one can manipulate a large number of
indistinguishable quantum computers by parallel unitary operations and measure
expectation values of certain observables with limited sensitivity. The initial
state of each computer in the ensemble is known but not pure. Methods for
obtaining effective pure input states by a series of manipulations have been
described by Gershenfeld and Chuang (logical labeling) and Cory et al. (spatial
averaging) for the case of quantum computation with nuclear magnetic resonance.
We give a different technique called temporal averaging. This method is based
on classical randomization, requires no ancilla qubits and can be implemented
in nuclear magnetic resonance without using gradient fields. We introduce
several temporal averaging algorithms suitable for both high temperature and
low temperature bulk quantum computing and analyze the signal to noise behavior
of each.Comment: 24 pages in LaTex, 14 figures, the paper is also avalaible at
http://qso.lanl.gov/qc
- …