2 research outputs found

    New Approach for Mining Site Reclamation Using Alternative Substrate Based on Phosphate Industry By-Product and Sludge Mixture

    No full text
    Mining soils are generally characterized by soils having a coarse texture and low fertility, which makes revegetation a very difficult and delicate operation, especially in arid and semi-arid zones. The main objective of this work is to evaluate different substrates that can both contribute to the successful reclamation of phosphate mining soils and the valorization of phosphate by-product and sewage sludge. The study was carried out in pots under a greenhouse on Italian ryegrass (Lolium multiflorum). The experimental design is a randomized complete block with ten treatments, four repetitions from five substrates: phosphogypsum (PG), phosphate sludge (PS), sewage sludge (SS), topsoil from mining (TS) and phosphate waste rocks (PWR); this corresponds to soil after rock phosphate extraction. Nitrogen fertilization was applied to treatments after soil depletion in treatments not receiving sludge. An aerial biomass measurement and nutrient analysis were carried out for the three cuts. The results showed that a proportion of 65% of PG enriched the substrate in phosphorus by improving the crop yield. The addition of 5% of SS contributed to a significant improvement of ryegrass aerial biomass. In the absence of SS application, the addition of nitrogen is required to maintain crop growth. For large-scale application, TS can be mixed with PS, SS and PG for mine site reclamation

    Study of the Sodicity of Phosphate By-Products and Sludge Mixture for Large-Scale Application in Mine Site Reclamation

    No full text
    Morocco has a very long mining tradition, and is threatened by ground salinization. The objective of this study was to evaluate the salinity level in the mixture of phosphate mining by-products and sludge prior to its use to reclaim a mine site or for soil remediation. The experiment was conducted with Italian ryegrass in 4 months under greenhouse. The design was a randomized complete block with 10 treatments and 4 replications. The results revealed that treatments containing phosphogypsum helped to reduce the effect of sodicity on soil. Thus, phosphogypsum associated with sludges can be used as an amendment to reclaim mine soil affected by sodicity
    corecore