3,240 research outputs found

    Concurrent Knowledge-Extraction in the Public-Key Model

    Get PDF
    Knowledge extraction is a fundamental notion, modelling machine possession of values (witnesses) in a computational complexity sense. The notion provides an essential tool for cryptographic protocol design and analysis, enabling one to argue about the internal state of protocol players without ever looking at this supposedly secret state. However, when transactions are concurrent (e.g., over the Internet) with players possessing public-keys (as is common in cryptography), assuring that entities ``know'' what they claim to know, where adversaries may be well coordinated across different transactions, turns out to be much more subtle and in need of re-examination. Here, we investigate how to formally treat knowledge possession by parties (with registered public-keys) interacting over the Internet. Stated more technically, we look into the relative power of the notion of ``concurrent knowledge-extraction'' (CKE) in the concurrent zero-knowledge (CZK) bare public-key (BPK) model.Comment: 38 pages, 4 figure

    Rearrangeable Networks with Limited Depth

    Get PDF
    Rearrangeable networks are switching systems capable of establishing simultaneous independent communication paths in accordance with any one-to-one correspondence between their n inputs and n outputs. Classical results show that Ξ©( n log n ) switches are necessary and that O( n log n ) switches are sufficient for such networks. We are interested in the minimum possible number of switches in rearrangeable networks in which the depth (the length of the longest path from an input to an output) is at most k, where k is fixed as n increases. We show that Ξ©( n1 + 1/k ) switches are necessary and that O( n1 + 1/k ( log n )1/k ) switches are sufficient for such networks

    Brightest galaxies as halo centre tracers in SDSS DR7

    Full text link
    Determining the positions of halo centres in large-scale structure surveys is crucial for many cosmological studies. A common assumption is that halo centres correspond to the location of their brightest member galaxies. In this paper, we study the dynamics of brightest galaxies with respect to other halo members in the Sloan Digital Sky Survey DR7. Specifically, we look at the line-of-sight velocity and spatial offsets between brightest galaxies and their neighbours. We compare those to detailed mock catalogues, constructed from high-resolution, dark-matter-only NN-body simulations, in which it is assumed that satellite galaxies trace dark matter subhaloes. This allows us to place constraints on the fraction fBNCf_{\rm BNC} of haloes in which the brightest galaxy is not the central. Compared to previous studies we explicitly take into account the unrelaxed state of the host haloes, velocity offsets of halo cores and correlations between fBNCf_{\rm BNC} and the satellite occupation. We find that fBNCf_{\rm BNC} strongly decreases with the luminosity of the brightest galaxy and increases with the mass of the host halo. Overall, in the halo mass range 1013βˆ’1014.5hβˆ’1MβŠ™10^{13} - 10^{14.5} h^{-1} M_\odot we find fBNC∼30%f_{\rm BNC} \sim 30\%, in good agreement with a previous study by Skibba et al. We discuss the implications of these findings for studies inferring the galaxy--halo connection from satellite kinematics, models of the conditional luminosity function and galaxy formation in general.Comment: 24 pages, 15 figures. Accepted for publication in MNRA

    How to Optimally Constrain Galaxy Assembly Bias: Supplement Projected Correlation Functions with Count-in-cells Statistics

    Full text link
    Most models for the connection between galaxies and their haloes ignore the possibility that galaxy properties may be correlated with halo properties other than mass, a phenomenon known as galaxy assembly bias. Yet, it is known that such correlations can lead to systematic errors in the interpretation of survey data. At present, the degree to which galaxy assembly bias may be present in the real Universe, and the best strategies for constraining it remain uncertain. We study the ability of several observables to constrain galaxy assembly bias from redshift survey data using the decorated halo occupation distribution (dHOD), an empirical model of the galaxy--halo connection that incorporates assembly bias. We cover an expansive set of observables, including the projected two-point correlation function wp(rp)w_{\mathrm{p}}(r_{\mathrm{p}}), the galaxy--galaxy lensing signal ΔΣ(rp)\Delta \Sigma(r_{\mathrm{p}}), the void probability function VPF(r)\mathrm{VPF}(r), the distributions of counts-in-cylinders P(NCIC)P(N_{\mathrm{CIC}}), and counts-in-annuli P(NCIA)P(N_{\mathrm{CIA}}), and the distribution of the ratio of counts in cylinders of different sizes P(N2/N5)P(N_2/N_5). We find that despite the frequent use of the combination wp(rp)+ΔΣ(rp)w_{\mathrm{p}}(r_{\mathrm{p}})+\Delta \Sigma(r_{\mathrm{p}}) in interpreting galaxy data, the count statistics, P(NCIC)P(N_{\mathrm{CIC}}) and P(NCIA)P(N_{\mathrm{CIA}}), are generally more efficient in constraining galaxy assembly bias when combined with wp(rp)w_{\mathrm{p}}(r_{\mathrm{p}}). Constraints based upon wp(rp)w_{\mathrm{p}}(r_{\mathrm{p}}) and ΔΣ(rp)\Delta \Sigma(r_{\mathrm{p}}) share common degeneracy directions in the parameter space, while combinations of wp(rp)w_{\mathrm{p}}(r_{\mathrm{p}}) with the count statistics are more complementary. Therefore, we strongly suggest that count statistics should be used to complement the canonical observables in future studies of the galaxy--halo connection.Comment: Figures 3 and 4 show the main results. Published in Monthly Notices of the Royal Astronomical Societ

    Generalized Tsirelson Inequalities, Commuting-Operator Provers, and Multi-Prover Interactive Proof Systems

    Full text link
    A central question in quantum information theory and computational complexity is how powerful nonlocal strategies are in cooperative games with imperfect information, such as multi-prover interactive proof systems. This paper develops a new method for proving limits of nonlocal strategies that make use of prior entanglement among players (or, provers, in the terminology of multi-prover interactive proofs). Instead of proving the limits for usual isolated provers who initially share entanglement, this paper proves the limits for "commuting-operator provers", who share private space, but can apply only such operators that are commutative with any operator applied by other provers. Commuting-operator provers are at least as powerful as usual isolated but prior-entangled provers, and thus, limits for commuting-operator provers immediately give limits for usual entangled provers. Using this method, we obtain an n-party generalization of the Tsirelson bound for the Clauser-Horne- Shimony-Holt inequality for every n. Our bounds are tight in the sense that, in every n-party case, the equality is achievable by a usual nonlocal strategy with prior entanglement. We also apply our method to a 3-prover 1-round binary interactive proof for NEXP. Combined with the technique developed by Kempe, Kobayashi, Matsumoto, Toner and Vidick to analyze the soundness of the proof system, it is proved to be NP-hard to distinguish whether the entangled value of a 3-prover 1-round binary-answer game is equal to 1 or at most 1-1/p(n) for some polynomial p, where n is the number of questions. This is in contrast to the 2-prover 1-round binary-answer case, where the corresponding problem is efficiently decidable. Alternatively, NEXP has a 3-prover 1-round binary interactive proof system with perfect completeness and soundness 1-2^{-poly}.Comment: 20 pages. v2: An incorrect statement in the abstract about the two-party case is corrected. Relation between this work and a preliminary work by Sun, Yao and Preda is clarifie

    The Galaxy Clustering Crisis in Abundance Matching

    Full text link
    Galaxy clustering on small scales is significantly under-predicted by sub-halo abundance matching (SHAM) models that populate (sub-)haloes with galaxies based on peak halo mass, MpeakM_{\rm peak}. SHAM models based on the peak maximum circular velocity, VpeakV_{\rm peak}, have had much better success. The primary reason MpeakM_{\rm peak} based models fail is the relatively low abundance of satellite galaxies produced in these models compared to those based on VpeakV_{\rm peak}. Despite success in predicting clustering, a simple VpeakV_{\rm peak} based SHAM model results in predictions for galaxy growth that are at odds with observations. We evaluate three possible remedies that could "save" mass-based SHAM: (1) SHAM models require a significant population of "orphan" galaxies as a result of artificial disruption/merging of sub-haloes in modern high resolution dark matter simulations; (2) satellites must grow significantly after their accretion; and (3) stellar mass is significantly affected by halo assembly history. No solution is entirely satisfactory. However, regardless of the particulars, we show that popular SHAM models based on MpeakM_{\rm peak} cannot be complete physical models as presented. Either VpeakV_{\rm peak} truly is a better predictor of stellar mass at z∼0z\sim 0 and it remains to be seen how the correlation between stellar mass and VpeakV_{\rm peak} comes about, or SHAM models are missing vital component(s) that significantly affect galaxy clustering.Comment: 25 pages, 22 figures, submitted to MNRAS, comments welcom
    • …
    corecore