1,436 research outputs found

    Critical role of electronic correlations in determining crystal structure of transition metal compounds

    Full text link
    The choice that a solid system "makes" when adopting a crystal structure (stable or metastable) is ultimately governed by the interactions between electrons forming chemical bonds. By analyzing 6 prototypical binary transition-metal compounds we demonstrate here that the orbitally-selective strong dd-electron correlations influence dramatically the behavior of the energy as a function of the spatial arrangements of the atoms. Remarkably, we find that the main qualitative features of this complex behavior can be traced back to simple electrostatics, i.e., to the fact that the strong dd-electron correlations influence substantially the charge transfer mechanism, which, in turn, controls the electrostatic interactions. This result advances our understanding of the influence of strong correlations on the crystal structure, opens a new avenue for extending structure prediction methodologies to strongly correlated materials, and paves the way for predicting and studying metastability and polymorphism in these systems.Comment: Main text: 8 pages, 4 figures, 1 table; Supplemental material: 2 pages, 1 figure, 2 table

    Studies on Rheological Behaviors of Bismaleimide Resin System for Resin Transfer Molding

    Get PDF
    AbstractThe rheological behavior of bismaleimide resin for resin transfer molding(RTM) was studied with DSC analysis and viscosity experiments. A rheological model based on the dual-Arrhenius equation was established and used to simulate the rheological behavior of the resin. The model predictions determined from the dual-Arrhenius equation were in good agreement with experimental data. The processing window of the resin system can be well determined based on the developed model. The rheological model is important for processing simulation and quality control of RTM processing for high performance composites

    Emergent Bloch excitations in Mott matter

    Get PDF
    We develop a unified theoretical picture for excitations in Mott systems, portraying both the heavy quasiparticle excitations and the Hubbard bands as features of an emergent Fermi liquid state formed in an extended Hilbert space, which is nonperturbatively connected to the physical system. This observation sheds light on the fact that even the incoherent excitations in strongly correlated matter often display a well-defined Bloch character, with pronounced momentum dispersion. Furthermore, it indicates that the Mott point can be viewed as a topological transition, where the number of distinct dispersing bands displays a sudden change at the critical point. Our results, obtained from an appropriate variational principle, display also remarkable quantitative accuracy. This opens an exciting avenue for fast realistic modeling of strongly correlated materials

    Rotationally invariant slave-boson and density matrix embedding theory: Unified framework and comparative study on the one-dimensional and two-dimensional Hubbard model

    Get PDF
    We present detailed benchmark ground-state calculations of the one- and two-dimensional Hubbard model utilizing the cluster extensions of the rotationally invariant slave-boson mean-field theory and the density matrix embedding theory. Our analysis shows that the overall accuracy and the performance of these two methods are very similar. Furthermore, we propose a unified computational framework that allows us to implement both of these techniques on the same footing. This provides us with a different line of interpretation and paves the ways for developing systematically distinct generalizations of these complementary approaches

    Problem-tailored Simulation of Energy Transport on Noisy Quantum Computers

    Full text link
    The transport of conserved quantities like spin and charge is fundamental to characterizing the behavior of quantum many-body systems. Numerically simulating such dynamics is generically challenging, which motivates the consideration of quantum computing strategies. However, the relatively high gate errors and limited coherence times of today's quantum computers pose their own challenge, highlighting the need to be frugal with quantum resources. In this work we report simulations on quantum hardware of infinite-temperature energy transport in the mixed-field Ising chain, a paradigmatic many-body system that can exhibit a range of transport behaviors at intermediate times. We consider a chain with L=12L=12 sites and find results broadly consistent with those from ideal circuit simulators over 90 Trotter steps, containing up to 990 entangling gates. To obtain these results, we use two key problem-tailored insights. First, we identify a convenient basis\unicode{x2013}the Pauli YY basis\unicode{x2013}in which to sample the infinite-temperature trace and provide theoretical and numerical justifications for its efficiency relative to, e.g., the computational basis. Second, in addition to a variety of problem-agnostic error mitigation strategies, we employ a renormalization strategy that compensates for global nonconservation of energy due to device noise. We expect that these techniques will prove useful beyond the specific application considered here.Comment: 8 + 10 pages, 3 + 8 figure
    corecore