6 research outputs found

    Antiferromagnetic and topological states in silicene: A mean field study

    No full text
    It has been widely accepted that silicene is a topological insulator, and its gap closes first and then opens again with increasing electric field, which indicates a topological phase transition from the quantum spin Hall state to the band insulator state. However, due to the relatively large atomic spacing of silicene, which reduces the bandwidth, the electron-electron interaction in this system is considerably strong and cannot be ignored. The Hubbard interaction, intrinsic spin orbital coupling (SOC), and electric field are taken into consideration in our tight-binding model, with which the phase diagram of silicene is carefully investigated on the mean field level. We have found that when the magnitudes of the two mass terms produced by the Hubbard interaction and electric potential are close to each other, the intrinsic SOC flips the sign of the mass term at either K or K' for one spin and leads to the emergence of the spin-polarized quantum anomalous Hall state

    Graphene Foam: Uniaxial Tension Behavior and Fracture Mode Based on a Mesoscopic Model

    No full text
    Because of the combined advantages of both porous materials and two-dimensional (2D) graphene sheets, superior mechanical properties of three-dimensional (3D) graphene foams have received much attention from material scientists and energy engineers. Here, a 2D mesoscopic graphene model (Modell. Simul. Mater. Sci. Eng. 2011, 19, 054003), was expanded into a 3D bonded graphene foam system by utilizing physical cross-links and van der Waals forces acting among different mesoscopic graphene flakes by considering the debonding behavior, to evaluate the uniaxial tension behavior and fracture mode based on in situ SEM tensile testing (Carbon 2015, 85, 299). We reasonably reproduced a multipeak stress strain relationship including its obvious yielding plateau and a ductile fracture mode near 45 plane from the tensile direction including the corresponding fracture morphology. Then, a power scaling law of tensile elastic modulus with mass density and an anisotropic strain-dependent Poisson's ratio were both deduced. The mesoscopic physical mechanism of tensile deformation was clearly revealed through the local stress state and evolution of mesostructure. The fracture feature of bonded graphene foam and its thermodynamic state were directly navigated to the tearing pattern of mesoscopic graphene flakes. This study provides an effective way to understand the mesoscopic physical nature of 3D graphene foams, and hence it may contribute to the multiscale computations of micro/meso/macromechanical performances and optimal design of advanced graphene-foam-based materials

    Self-assembled chiral phosphorus nanotubes from phosphorene: a molecular dynamics study

    No full text
    Controlled syntheses in nanoscale structures should be expected and phosphorous nanotubes with predefined chiralities are important in electronic devices with tunable bandgap. Here incorporating molecular dynamics simulations with theoretical analyses we show that a zigzag phosphorene nanoribbon can self-assemble and form a corresponding chiral phosphorous nanotube surrounding a template armchair phosphorous nanotube. The van der Waals potential between the nanoribbon and the nanotube is transformed to the intrinsic deformed and chemical bonding energies of the synthesized tube together with partial kinetic energy. The self-assembly process has an apparent temperature dependence and size effect and the formed chiral tube is thermodynamically stable. Also the chirality and measurement can be tuned by the radius of template tube and the aspect ratio of raw ribbon. The study suggests a novel and feasible approach for controlled synthesis of phosphorous nanotubes and thus is of great interest for semiconductor device applications.</p

    Simulations of twisted bilayer orthorhombic black phosphorus

    No full text
    We identified, by means of coincidence site lattice theory, an evaluative stacking phase with a wavelike Moire pattern, denoted as 2O-t alpha P, from all potentially twisted bilayer orthorhombic black phosphorus. Such a twisted stacking comes with a low formation energy of - 162.8 meV, very close to existing AB stacking, according to first-principles calculations. Particularly, classic molecular dynamic simulations verified that the stacking can be directly obtained in an in situ cleavage. The stability of 2O-t alpha P stacking can be directly attributed to the corrugated configuration of black phosphorus leading to the van der Waals constraining forces, where the top layer can get stuck to the bottom when one layer rotates in plane relative to the other by similar to 70.5 degrees. Tribological analysis further revealed that the interlayer friction of 2O-t alpha P stacking reaches up to 1.3 nN, playing a key role in the origin of 2O-t alpha P
    corecore