14 research outputs found
Workspace Description and Evaluation of Master-Slave Dual Hydraulic Manipulators
Nuclear power plant emergency robots are robots used to respond to significant public safety incidents, such as uncontrolled radioactive sources and nuclear catastrophe leaks. However, there are no standardized evaluation criteria for the optimal design of the robots. We offer a quantitative analytic algorithm for optimizing nuclear power plant emergency robots to address this issue. The method optimizes the structural parameters of the robot in accordance with the workspace by analyzing, comparing, and evaluating the workspace. The approach comprises constructing a kinematic model of the mechanical arm and proposing an optimization algorithm based on the alpha shape to accurately describe the manipulator workspace; employing the proposed convex hull algorithm to quantitatively analyze and evaluate the workspace generated by different solutions in terms of area, volume, task demand, Structural Length Index and Global Conditioning Index; and determining the robotic arm joint parameters by selecting the optimum workspace design solution. Using the suggested algorithm, we optimize the design of the master and slave robotic arms of the nuclear power plant emergency robots. Theoretical calculations and simulation results demonstrate that the method is an effective and practical evaluation technique that not only accurately describes the workspace but also optimizes the design of the nuclear power plant emergency robots
A prognostic model based on the Augmin family genes for LGG patients
Abstract Gliomas are the most prevalent primary tumors in the central nervous system. Despite some breakthroughs in the treatment of glioma in recent years, survival rates remain low. Although genes of the Augmin family play a key role in microtubule nucleation, the role they play in gliomas is unclear. Transcriptome data were extracted from UCSC XENA and GTEx for low-grade glioma (LGG) and normal tissues, respectively. The protein interaction network associated with Augmin family genes was established using STRING and GeneMANIA databases. Enrichment analysis of gene-related functions and pathways was used to explore potential biological pathways and TIMER to assess immune cell infiltration. Regression analysis and Kaplan–Meier analysis were used to look at the clinical characteristics of the Augmin family genes and the association with the prognosis of patients with glioma. The results showed that the mRNA expression of Augmin family genes was significantly elevated in LGG tissues, except for HAUS7. Immunoregulation, cell cycle, apoptosis and other signaling pathways may be involved in the development and progression of LGG. Except for HAUS4 and HAUS7, the expression of all genes was positively correlated with immune cell infiltration. High expression of HAUS1, HAUS3, HAUS5, HAUS7, HAUS8 and low expression of HAUS4, HAUS6 in LGG was associated with poor prognosis. The risk models constructed based on the pivotal genes HAUS2, HAUS4 and HAUS8 were validated by nomogram and confirmed to be clinically useful for predicting the prognosis of LGG
Effects of Ultrasound-Assisted Vacuum Impregnation Antifreeze Protein on the Water-Holding Capacity and Texture Properties of the Yesso Scallop Adductor Muscle during Freeze–Thaw Cycles
The effect of antifreeze protein (AFP) on the water-holding capacity (WHC) and texture properties of the Patinopecten yessoensis adductor muscles during freeze–thaw cycles (FTCs) were evaluated based on three impregnation methods: general impregnation (GI), vacuum impregnation (VI), and ultrasound-assisted VI (US-VI). The WHC, texture properties, and tissue microstructure were all evaluated. Results showed that the WHC and texture properties of adductor muscle were significantly improved in the VI and US-VI groups during FTCs (p < 0.05). The WHC of the adductor muscle in the US-VI group was maximally enhanced in terms of yield (6.63%), centrifugal loss, cooking loss, and T22. The US-VI group of the adductor muscle had the optimal chewiness and springiness compared to others, and the shear force and hardness were most effectively enhanced by VI. The growth and recrystallization of ice crystals in the frozen adductor muscle were significantly inhibited by VI and US-VI. The average cross-sectional area and roundness of ice crystals in the US-VI group were decreased by 61.89% and increased by 22.22% compared with those of the control, respectively. The partial least squares regression (PLSR) model further confirmed that the WHC and texture properties of the adductor muscle were correlated appreciably with the degree of modification of ice crystal morphology through the AFP
Small Peptides Isolated from Enzymatic Hydrolyzate of Pneumatophorus japonicus Bone Promote Sleep by Regulating Circadian Rhythms
Due to the high addiction and side effects of medicines, people have increasingly inclined to natural and healthy peptides to improve sleep. Herein, we isolated novel peptides with sleep-promoting ability from Pneumatophorus japonicus bone peptides (PBPs) and constructed an insomniac zebrafish model as a demonstration, incorporating behavioral and transcriptomic approaches to reveal the sleep-promoting effect and mechanism of PBPs. Specifically, a sequential targeting isolation approach was developed to refine and identify a peptide with remarkable sleep-promoting activity, namely TG7 (Tyr-Gly-Asn-Pro-Trp-Glu-Lys). TG7 shows comparable effects and a similar action pathway to melatonin in improving sleep. TG7 restores abnormal behavior of insomnia zebrafish to normal levels by upregulating the hnrnpa3 gene. The peptide downregulates per1b gene but upregulates cry1b, cry1ba and per2, improving the circadian rhythm. Furthermore, TG7 upregulates the genes gnb3b, arr3b and opn1mw1 to regulate the visual function. The above results indicate that TG7 improves circadian rhythms and attenuated abnormal alterations in visual function and motility induced by light, allowing for effective sleep promotion. This study isolated sleep-promoting peptides from PBPs, which provides a theoretical basis for the development of subsequent sleep-promoting products based on protein peptides