3,848 research outputs found

    Melatonin Inhibits Androgen Receptor Splice Variant-7 (AR-V7)-Induced Nuclear Factor-Kappa B (NF-κB) Activation and NF-κB Activator-Induced AR-V7 Expression in Prostate Cancer Cells: Potential Implications for the Use of Melatonin in Castration-Resistant Prostate Cancer (CRPC) Therapy

    Get PDF
    A major current challenge in the treatment of advanced prostate cancer, which can be initially controlled by medical or surgical castration, is the development of effective, safe, and affordable therapies against progression of the disease to the stage of castration resistance. Here, we showed that in LNCaP and 22Rv1 prostate cancer cells transiently overexpressing androgen receptor splice variant-7 (AR-V7), nuclear factor-kappa B (NF-κB) was activated and could result in up-regulated interleukin (IL)-6 gene expression, indicating a positive interaction between AR-V7 expression and activated NF-κB/IL-6 signaling in castration-resistant prostate cancer (CRPC) pathogenesis. Importantly, both AR-V7-induced NF-κB activation and IL-6 gene transcription in LNCaP and 22Rv1 cells could be inhibited by melatonin. Furthermore, stimulation of AR-V7 mRNA expression in LNCaP cells by betulinic acid, a pharmacological NF-κB activator, was reduced by melatonin treatment. Our data support the presence of bi-directional positive interactions between AR-V7 expression and NF-κB activation in CRPC pathogenesis. Of note, melatonin, by inhibiting NF-κB activation via the previously-reported MT₁ receptor-mediated antiproliferative pathway, can disrupt these bi-directional positive interactions between AR-V7 and NF-κB and thereby delay the development of castration resistance in advanced prostate cancer. Apparently, this therapeutic potential of melatonin in advanced prostate cancer/CRPC management is worth translation in the clinic via combined androgen depletion and melatonin repletion.published_or_final_versio

    Activation of AMPK inhibits cervical cancer cell growth through AKT/FOXO3a/FOXM1 signaling cascade

    Get PDF
    published_or_final_versio

    sPDZD2: a novel negative modulator of hedgehog signaling

    Get PDF
    Poster Presentation - Theme 3: Development & stem cellsPDZD2 is a multi-PDZ domain-containing protein of unknown function in early development. It is proteolytically cleaved to generate its secreted form, sPDZD2. Human PDZD2 is mapped to chromosome 5p13.2, which co-localizes with the disease-associated gene in a family of Brachydactyly Type A1 (BDA1) patients, suggesting involvement of PDZD2 in limb development. Hedgehog (Hh) is an important morphogen that dictates tissue patterning during embryonic development and recent studies showed that mutations in Indian Hedgehog (IHH) resulted in ...postprin

    Inhibition of prostate cancer cell growth by human secreted PDZ domain-containing protein 2, a potential autocrine prostate tumor suppressor

    Get PDF
    A possible role of the PDZ domain-containing protein 2 (PDZD2) in prostate tumorigenesis has been suggested. Besides, PDZD2 is posttranslationally cleaved by a caspase-dependent mechanism to form a secreted PDZ domain-containing protein 2 (sPDZD2) with unknown functions in humans. In this study, we demonstrate the endogenous expression of PDZD2 and secretion of sPDZD2 in cancerous DU145, PC-3, 22Rv1, LNCaP, and immortalized RWPE-1 prostate epithelial cells. Inhibition of endogenous sPDZD2 production and secretion by DU145, PC-3, 22Rv1, and RWPE-1 cells via the caspase-3 inhibitor Z-DEVD-FMK resulted in increased cell proliferation, which was abrogated by treatment with exogenous recombinant sPDZD2. Whereas sPDZD2-induced antiproliferation in DU145, PC-3, and 22Rv1 cells, it induced apoptosis in LNCaP cells. The data suggest that endogenous sPDZD2, produced by caspase-3-mediated cleavage from PDZD2, may function as a novel autocrine growth suppressor for human prostate cancer cells. The antiproliferative effect of sPDZD2 was apparently mediated through slowing the entry of DU145, PC-3, and 22Rv1 cells into the S phase of the cell cycle. In DU145 cells, this can be attributed to stimulated p53 and p21 CIP1/WAF1 expression by sPDZD2. On the other hand, the apoptotic effect of sPDZD2 on LNCaP cells was apparently mediated via p53-independent Bad stimulation. Together our results indicate the presence of p53-dependent and p53-independent PDZD2/sPDZD2 autocrine growth suppressive signaling pathways in human prostate cancer cells and suggest a novel therapeutic approach of harnessing the latent tumor-suppressive potential of an endogenous autocrine signaling protein like sPDZD2 to inhibit prostate cancer growth. Copyright © 2006 by The Endocrine Society.postprin

    Reduced expression of AMPK-β1 during tumor progression enhances the oncogenic capacity of advanced ovarian cancer

    Get PDF
    AMP-activated protein kinase (AMPK) is a key energy sensor that is involved in regulating cell metabolism. Our previous study revealed that the subunits of the heterotimeric AMPK enzyme are diversely expressed during ovarian cancer progression. However, the impact of the variable expression of these AMPK subunits in ovarian cancer oncogenesis remains obscure. Here, we provide evidence to show that reduced expression of the AMPK-beta1 subunit during tumor progression is associated with the increased oncogenic capacity of advanced ovarian cancer cells. Immunohistochemical analysis revealed that AMPK-beta1 levels were reduced in advanced-stage (P = 0.008), high-grade (P = 0.013) and metastatic ovarian cancers (P = 0.008). Intriguingly, down-regulation of AMPK-beta1 was progressively reduced from tumor stages 1 to 3 of ovarian cancer. Functionally, enforced expression of AMPK-beta1 inhibited ovarian-cancer-cell proliferation, anchorage-independent cell growth, cell migration and invasion. Conversely, depletion of AMPK-beta1 by siRNA enhanced the oncogenic capacities of ovarian cancer cells, suggesting that the loss of AMPK-beta1 favors the aggressiveness of ovarian cancer. Mechanistically, enforced expression of AMPK-beta1 increased AMPK activity, which, in turn, induced cell-cycle arrest via inhibition of AKT/ERK signaling activity as well as impaired cell migration/invasion through the suppression of JNK signaling in ovarian cancer cells. Taken together, these findings suggest that the reduced expression of AMPK-beta1 confers lower AMPK activity, which enhances the oncogenic capacity of advanced-stage ovarian cancer.published_or_final_versio

    Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c

    Get PDF
    The forkhead box (FOX) transcription factor FOXM1 is ubiquitously expressed in proliferating cells. FOXM1 expression peaks at the G2/M phase of the cell cycle and its functional deficiency in mice leads to defects in mitosis. To investigate the role of FOXM1 in the cell cycle, we used synchronized hTERT-BJ1 fibroblasts to examine the cell cycle-dependent regulation of FOXM1 function. We observed that FOXM1 is localized mainly in the cytoplasm in cells at late-G1 and S phases. Nuclear translocation occurs just before entry into the G2/M phase and is associated with phosphorylation of FOXM1. Consistent with the dependency of FOXM1 function on mitogenic signals, nuclear translocation of FOXM1 requires activity of the Raf/MEK/MAPK signaling pathway and is enhanced by the MAPK activator aurintricarboxylic acid. This activating effect was suppressed by the MEK1/2 inhibitor U0126. In transient reporter assays, constitutively active MEK1 enhances the transactivating effect of FOXM1c, but not FOXM1b, on the cyclin B1 promoter. RT-PCR analysis confirmed that different cell lines and tissues predominantly express the FOXM1c transcript. Mutations of two ERK1/2 target sequences within FOXM1c completely abolish the MEK1 enhancing effect, suggesting a direct link between Raf/MEK/MAPK signaling and FOXM1 function. Importantly, inhibition of Raf/MEK/MAPK signaling by U0126 led to suppression of FOXM1 target gene expression and delayed progression through G2/M, verifying the functional relevance of FOXM1 activation by MEK1. In summary, we provide the first evidence that Raf/MEK/MAPK signaling exerts its G2/M regulatory effect via FOXM1c.published_or_final_versio

    Increased basal insulin secretion in Pdzd2-deficient mice

    Get PDF
    Expression of the multi-PDZ protein Pdzd2 (PDZ domain-containing protein 2) is enriched in pancreatic islet β cells, but not in exocrine or α cells, suggesting a role for Pdzd2 in the regulation of pancreatic β-cell function. To explore the in vivo function of Pdzd2, Pdzd2-deficient mice were generated. Homozygous Pdzd2 mutant mice were viable and their gross morphology appeared normal. Interestingly, Pdzd2-deficient mice showed enhanced glucose tolerance in intraperitoneal glucose tolerance tests and their plasma insulin levels indicated increased basal insulin secretion after fasting. Moreover, insulin release from mutant pancreatic islets was found to be twofold higher than from normal islets. To verify the functional defect in vitro, Pdzd2 was depleted in INS-1E cells using two siRNA duplexes. Pdzd2-depleted INS-1E cells also displayed increased insulin secretion at low concentrations of glucose. Our results provide the first evidence that Pdzd2 is required for normal regulation of basal insulin secretion. © 2009 Elsevier Ireland Ltd. All rights reserved.postprin

    Aberrant activation of ERK/FOXM1 signaling cascade triggers the cell migration/invasion in ovarian cancer cells

    Get PDF
    Forkhead box M1 (FOXM1) is a proliferation-associated transcription factor essential for cell cycle progression. Numerous studies have documented that FOXM1 has multiple functions in tumorigenesis and its elevated levels are frequently associated with cancer progression. Here, we characterized the role of ERK/FOXM1 signaling in mediating the metastatic potential of ovarian cancer cells. Immunohistochemical (IHC), immunoblotting and semi-quantitative RT-PCR analyses found that both phospho-ERK and FOXM1 were frequently upregulated in ovarian cancers. Intriguingly, the overexpressed phospho-ERK (p<0.001) and FOXM1 (p<0.001) were significantly correlated to high-grade ovarian tumors with aggressive behavior such as metastasized lymph node (5 out of 6). Moreover, the expressions of phospho-ERK and FOXM1 had significantly positive correlation (p<0.001). Functionally, ectopic expression of FOXM1B remarkably enhanced cell migration/invasion, while FOXM1C not only increased cell proliferation but also promoted cell migration/invasion. Conversely, inhibition of FOXM1 expression by either thiostrepton or U0126 could significantly impair FOXM1 mediated oncogenic capacities. However, the down-regulation of FOXM1 by either thiostrepton or U0126 required the presence of p53 in ovarian cancer cells. Collectively, our data suggest that over-expression of FOXM1 might stem from the constitutively active ERK which confers the metastatic capabilities to ovarian cancer cells. The impairment of metastatic potential of cancer cells by FOXM1 inhibitors underscores its therapeutic value in advanced ovarian tumors. © 2011 Lok et al.published_or_final_versio
    corecore