9 research outputs found

    Self-Assembly of Silver Nanowire Films for Surface-Enhanced Raman Scattering Applications

    No full text
    The development of SERS detection technology is challenged by the difficulty in obtaining SERS active substrates that are easily prepared, highly sensitive, and reliable. Many high-quality hotspot structures exist in aligned Ag nanowires (NWs) arrays. This study used a simple self-assembly method with a liquid surface to prepare a highly aligned AgNW array film to form a sensitive and reliable SERS substrate. To estimate the signal reproducibility of the AgNW substrate, the RSD of SERS intensity of 1.0 × 10−10 M Rhodamine 6G (R6G) in an aqueous solution at 1364 cm−1 was calculated to be as low as 4.7%. The detection ability of the AgNW substrate was close to the single molecule level, and even the R6G signal of 1.0 × 10−16 M R6G could be detected with a resonance enhancement factor (EF) as high as 6.12 × 1011 under 532 nm laser excitation. The EF without the resonance effect was 2.35 × 106 using 633 nm laser excitation. FDTD simulations have confirmed that the uniform distribution of hot spots inside the aligned AgNW substrate amplifies the SERS signal

    Circularly Polarized Antenna Array with Decoupled Quad Vortex Beams

    No full text
    Achieving multiple vortex beams with different modes in a planar microstrip array is pivotal, yet still extremely challenging. Here, a hybrid method combining both Pancharatnam−Berry (PB) phase that is induced by the rotation phase and excitation phase of a feeding line has been proposed for decoupling two orthogonal circularly polarized vortex beams. Theoretical analysis is derived for array design to generate quad vortex beams with different directions and an arbitrary number of topological charges. On this basis, two 8 × 8 planar arrays were theoretically designed in an X band, which are with topological charges of l1 = −1, l2 = 1, l3 = −1, and l4 = 1 in Case I and topological charges of l1 = −1, l2 = 1, l3 = −1, and l4 = 1 in Case II. To further verify the above theory, the planar array in Case I is fabricated and analyzed experimentally. Dual-LP beams are realized by using rectangular patch elements with two orthogonally distributed feeding networks on different layers based on two types of feeding: proximity coupling and aperture coupling. Both the numerical simulation and experimental measurement results are in good agreement and showcase the corresponding quad-vortex-beam characteristics within 8~12 GHz. The array achieves a measured S11 22 < −10 dB bandwidth of more than 33.4% and 29.2%, respectively. In addition, the isolation between two ports is better than −28 dB. Our strategy provides a promising way to achieve large capacity and high integration, which is of great benefit to wireless and radar communication systems
    corecore