149 research outputs found
High-density amorphous phase of silicon carbide obtained under large plastic shear and high pressure
In situ x-ray diffraction study of the hexagonal 6H SiC under pressure and shear in rotational diamond anvil cell is performed that reveals phase transformation to the new high-density amorphous (hda) phase SiC. In contrast to known low-density amorphous SiC, hda-SiC is promoted by pressure and unstable under pressure release. The critical combination of pressure ∼30 GPa and rotation of an anvil of 2160° that causes disordering is determined
Strain-induced phase transformation under compression in a diamond anvil cell: Simulations of a sample and gasket
Combined high pressure phase transformations (PTs) and plastic flow in a sample within a gasket compressed in diamond anvil cell (DAC) are studied for the first time using finite element method. The key point is that phase transformations are modelled as strain-induced, which involves a completely different kinetic description than for traditional pressure-induced PTs. The model takes into account, contact sliding with Coulomb and plastic friction at the boundaries between the sample, gasket, and anvil. A comprehensive computational study of the effects of the kinetic parameter, ratio of the yield strengths of high and low-pressure phases and the gasket, sample radius, and initial thickness on the PTs and plastic flow is performed. A new sliding mechanism at the contact line between the sample, gasket, and anvil called extrusion-based pseudoslip is revealed, which plays an important part in producing high pressure. Strain-controlled kinetics explains why experimentally determined phase transformation pressure and kinetics (concentration of high pressure phase vs. pressure) differ for different geometries and properties of the gasket and the sample: they provide different plastic strain, which was not measured. Utilization of the gasket changes radial plastic flow toward the center of a sample, which leads to high quasi-homogeneous pressure for some geometries. For transformation to a stronger high pressure phase, plastic strain and concentration of a high-pressure phase are also quasi-homogeneous. This allowed us to suggest a method of determining strain-controlled kinetics from experimentation, which is not possible for weaker and equal-strength high-pressure phases and cases without a gasket. Some experimental phenomena are reproduced and interpreted. Developed methods and obtained results represent essential progress toward the understanding of PTs under compression in the DAC. This will allow one optimal design of experiments and conditions for synthesis of new high pressure phases
Shear driven formation of nano-diamonds at sub-gigapascals and 300 K
The transformation pathways of carbon at high pressures are of broad interest for synthesis of novel materials and for revealing the Earth's geological history. We have applied large plastic shear on graphite in a rotational anvil cell to form hexagonal diamond and nanocrystalline cubic diamond at extremely low pressures of 0.4 and 0.7 GPa, which are 50 and 100 times lower than the transformation pressures under hydrostatic compression and well below the phase equilibrium. Large shearing accompanied with pressure elevation to 3 GPa also leads to formation of a new orthorhombic diamond phase. Our results demonstrate new mechanisms and new means for plastic shear-controlled material synthesis at drastically reduced pressures, enabling new technologies for material synthesis. The result also has significant geological implications
Ionic high-pressure form of elemental boron
Boron is an element of fascinating chemical complexity. Controversies have
shrouded this element since its discovery was announced in 1808: the new
'element' turned out to be a compound containing less than 60-70 percent of
boron, and it was not until 1909 that 99-percent pure boron was obtained. And
although we now know of at least 16 polymorphs, the stable phase of boron is
not yet experimentally established even at ambient conditions. Boron's
complexities arise from frustration: situated between metals and insulators in
the periodic table, boron has only three valence electrons, which would favour
metallicity, but they are sufficiently localized that insulating states emerge.
However, this subtle balance between metallic and insulating states is easily
shifted by pressure, temperature and impurities. Here we report the results of
high-pressure experiments and ab initio evolutionary crystal structure
predictions that explore the structural stability of boron under pressure and,
strikingly, reveal a partially ionic high-pressure boron phase. This new phase
is stable between 19 and 89 GPa, can be quenched to ambient conditions, and has
a hitherto unknown structure (space group Pnnm, 28 atoms in the unit cell)
consisting of icosahedral B12 clusters and B2 pairs in a NaCl-type arrangement.
We find that the ionicity of the phase affects its electronic bandgap, infrared
adsorption and dielectric constants, and that it arises from the different
electronic properties of the B2 pairs and B12 clusters and the resultant charge
transfer between them.Comment: Published in Nature 453, 863-867 (2009
Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure
Disordered structures of boron nitride (BN), graphite, boron carbide (BC), and boron carbon nitride (BCN) systems are considered important precursor materials for synthesis of superhard phases in these systems. However, phase transformation of such materials can be achieved only at extreme pressure–temperature conditions, which is irrelevant to industrial applications. Here, the phase transition from disordered nanocrystalline hexagonal (h)BN to superhard wurtzitic (w)BN was found at room temperature under a pressure of 6.7 GPa after applying large plastic shear in a rotational diamond anvil cell (RDAC) monitored by in situ synchrotron X-ray diffraction (XRD) measurements. However, under hydrostatic compression to 52.8 GPa, the same hBN sample did not transform to wBN but probably underwent a reversible transformation to a high-pressure disordered phase with closed-packed buckled layers. The current phase-transition pressure is the lowest among all reported direct-phase transitions from hBN to wBN at room temperature. Usually, large plastic straining leads to disordering and amorphization; here, in contrast, highly disordered hBN transformed to crystalline wBN. The mechanisms of strain-induced phase transformation and the reasons for such a low transformation pressure are discussed. Our results demonstrate a potential of low pressure–room temperature synthesis of superhard materials under plastic shear from disordered or amorphous precursors. They also open a pathway of phase transformation of nanocrystalline materials and materials with disordered and amorphous structures under extensive shear
Shear driven formation of nano-diamonds at sub-gigapascals and 300 K
The transformation pathways of carbon at high pressures are of broad interest
for synthesis of novel materials and for revealing the Earth's geological
history. We have applied large plastic shear on graphite in rotational anvils
to form hexagonal and nanocrystalline cubic diamond at extremely low pressures
of 0.4 and 0.7 GPa, which are 50 and 100 times lower than the transformation
pressures under hydrostatic compression and well below the phase equilibrium.
Large shearing accompanied with pressure elevation to 3 GPa also leads to
formation of a new orthorhombic diamond phase. Our results demonstrate new
mechanisms and new means for plastic shear-controlled material synthesis at
drastically reduced pressures, enabling new technologies for material
synthesis. The results indicate that the micro-diamonds found in the low
pressure-temperature crust could have formed during a large shear producing
event, such as tectonic rifting and continued plate collision, without the need
to postulate subduction to the mantle.Comment: 15 pages, 6 figures, 3 table
Precise Measurements of Branching Fractions for Meson Decays to Two Pseudoscalar Mesons
We measure the branching fractions for seven two-body decays to
pseudo-scalar mesons, by analyzing data collected at
GeV with the BESIII detector at the BEPCII collider. The branching fractions
are determined to be ,
,
,
,
,
,
,
where the first uncertainties are statistical, the second are systematic, and
the third are from external input branching fraction of the normalization mode
. Precision of our measurements is significantly improved
compared with that of the current world average values
Research on pitch control of coal mine roadheader based on fuzzy neural network PID
Currently, PID control method is mainly used for the pitch control of coal mine roadheader, and the control precision is not high in the case of time-varying and nonlinear hydraulic system during the pitch control of roadheader. The pitch control of roadbeader is realized by controlling the stroke of the hydraulic cylinder. Combining the traditional PID algorithm with fuzzy control and neural network, the accuracy of the stroke control of the hydraulic cylinder can be effectively improved. In order to solve the above problems, a pitch control method for coal mine roadheader based on fuzzy neural network PID is proposed. By analyzing the kinematic relationship of the support part of the roadheader, the mathematical relationship between the pitch angle and the hydraulic cylinder of the support part is obtained. The working principle of the pitch control hydraulic system of the roadheader is introduced, and the hydraulic system and its transfer function model are established. The method combines fuzzy control with neural networks to form a fuzzy neural network. The method optimizes PID control parameters by using the fuzzy neural network. The method combines the mathematical model of the support mechanism and the transfer function model of the hydraulic system to establish a fuzzy neural network PID control model for the pitch angle of the roadheader. It achieves automatic and precise control of the pitch mechanism of the coal mine roadheader. This method can make the pitch mechanism of the roadheader reach the preset position more quickly and accurately, solving the time-varying and nonlinear problems in the pitch control of roadheader. The simulation results show that the fuzzy neural network PID control algorithm reduces tracking errors by 69.34% and 74.49% respectively compared to fuzzy PID and PID control algorithms. The method simulates the pitch control of coal mine roadheaders under sudden and following working conditions through hydraulic cylinder displacement control. The results show that compared with fuzzy PID and PID control algorithms, the fuzzy neural network PID control algorithm has the smallest pitch control tracking error, shortens the average response time to position signals by 27.22% and 50.33% respectively, and has better dynamic control performance
- …
