133 research outputs found

    Fenofibrate Enhances the In Vitro Differentiation of Foxp3+ Regulatory T Cells in Mice

    Get PDF
    Foxp3+ regulatory T cells (Tregs) play a critical role in maintaining immune self-tolerance. Reduced number and activity of Tregs are usually found in autoimmune and inflammatory diseases, and enhancing the differentiation of Tregs may be a promising therapeutic strategy. Some reports suggested an anti-inflammatory and anti-autoimmune potential for fenofibrate, a hypolipidemic drug used worldwide, whose lipid effects are mediated by the activation of peroxisome proliferator-activated receptor α (PPARα). In the present paper, we found that fenofibrate dose-dependently increased transforming growth factor-β and interleukin-2-induced Treg differentiation in vitro, by 1.96-fold from 0 to 20 μM (12.59 ± 1.34% to 24.69 ± 3.03%, P < 0.05). Other PPARα activators, WY14643 (100 μM), gemfibrozil (50 μM), and bezafibrate (30 μM), could not enhance Treg differentiation. In addition, PPARα could not upregulate the promoter activity of the Treg-specific transcription factor Foxp3. Fenofibrate might exert its function by enhancing Smad3 phosphorylation, a critical signal in Treg differentiation, via Akt suppression. Our work reveals a new PPARα independent anti-inflammatory mechanism of fenofibrate in up-regulating mouse Treg differentiation

    Preparation and Characterization of Calcium Alginate-Whey Protein Isolate Composite Gel Embedded with Anthocyanins

    Get PDF
    Calcium alginate-whey protein isolate (CA-WPI) composite gel embedded with anthocyanins was prepared by in-situ release method using sodium alginate and whey protein isolate as raw materials. The raw materials were allocated to three treatments: CA-WPI both at room temperature, room temperature CA-heated WPI, and heated CA-heated WPI. The results showed that compared with the control CA gel, the addition of heated WPI reduced the dehydration shrinkage rate of the gel by 74.17% and increased the freeze-thaw stability by 36.37%. In addition, the linear viscoelastic region of the mixed gels was greatly extended, while the creep recovery rate was decreased. Compared with the control gel, the hardness of the composite gels decreased, the viscosity of the heated CA-heated WPI gel significantly increased to 0.68 mJ. The results of infrared spectroscopy and storage stability showed that the composite gels effectively encapsulated anthocyanins, and 85.01% of the anthocyanins embedded in the heated CA-heated WPI composite gel was retained after 15 days of storage at 25 ℃

    Development of κ-carrageenan hydrogels with mechanically stronger structures via a solvent-replacement method

    Get PDF
    Strong κ-carrageenan (KC) hydrogels were fabricated via solvent replacement with sorbitol, and the effects of KC mass fraction and solvent replacement on the structural characteristics encapsulation capability of the hydrogels were evaluated. Microstructural observation showed that the 3D network structures of hydrogels exhibited a complete and continuous skeleton. FTIR spectra of KC hydrogels revealed the formation of intermolecular hydrogen bonds after sorbitol replacement. The stability against heating and freeze-thawing of hydrogels was enhanced due to the addition of sorbitol and the rise in KC mass fraction. The hydrogel with 1.5 wt% KC after sorbitol replacement presented the best stability. Frequency sweep tests suggested that storage modulus of the samples were influenced by sorbitol replacement and KC concentration. Swelling tests revealed that the hydrogels after replacement with a higher KC content (1.25, 1.50 wt%) presented higher swelling capacity, and they were more stable in alkaline and acidic solutions. When epigallocatechin gallate (EGCG) was incorporated within the hydrogels, the hydrogels after sorbitol replacement offered higher protection capability. The information obtained in this study indicated that sorbitol replacement strengthened KC hydrogels, and they could act more appropriately as accountable carriers for bioactives

    The structural and optical properties of GaSb/InGaAs type-II quantum dots grown on InP (100) substrate

    Get PDF
    We have investigated the structural and optical properties of type-II GaSb/InGaAs quantum dots [QDs] grown on InP (100) substrate by molecular beam epitaxy. Rectangular-shaped GaSb QDs were well developed and no nanodash-like structures which could be easily found in the InAs/InP QD system were formed. Low-temperature photoluminescence spectra show there are two peaks centered at 0.75eV and 0.76ev. The low-energy peak blueshifted with increasing excitation power is identified as the indirect transition from the InGaAs conduction band to the GaSb hole level (type-II), and the high-energy peak is identified as the direct transition (type-I) of GaSb QDs. This material system shows a promising application on quantum-dot infrared detectors and quantum-dot field-effect transistor

    Utjecaj velikih i malih molekula emulgatora na svojstva nanoemulzija β-karotena, pripremljenih homogenizacijom pod visokim pritiskom

    Get PDF
    Oil-in-water (O/W) nanoemulsion allows the preparation of lipophilic nutrients such as carotenoids in liquid form, which may improve their bioavailability and broaden applications. In the present study, polyoxyethylene sorbitan monolaurate (Tween 20, TW-20), decaglycerol monolaurate (DML), octenyl succinate starch (OSS), whey protein isolate (WPI), and finally a blend of TW-20 and WPI (1 % by mass) have been tested for the preparation of β-carotene nanoemulsions. Interfacial tension, droplet size, zeta potential, microstructures observed by atomic force microscopy (AFM), stability of the emulsion and β-carotene have been compared. Results show that nanoemulsions stabilized with TW-20 and DML had smaller droplet size, but relatively poorer stability, compared with the ones stabilized with OSS and WPI (p0.05).Nanoemulzije ulja u vodi omogućuju pripremu lipofilnih hranjivih tvari, kao što su karotenoidi u tekućem obliku, čime se povećava njihova biološka pristupačnost i primjena. U radu je istražena mogućnost pripreme nanoemulzija β-karotena pomoću ovih emulgatora: polioksietilen sorbitan monolaurata (Tween 20), dekaglicerol monolaurata, škrob natrijeva oktenil sukcinata, izolata pšeničnih proteina i 1 %-tne smjese Tween 20 i izolata pšeničnih proteina. Uspoređena je međupovršinska napetost dobivenih emulzija, veličina kapljica, zeta- potencijal, mikrostruktura (utvrđena pomoću mikroskopa atomskih sila), te stabilnost emulzija i β-karotena. Rezultati pokazuju da nanoemulzije stabilizirane s Tween 20 i dekaglicerol monolauratom imaju manje kapljice, ali slabiju stabilnost od emulzija stabiliziranih sa škrob natrijevim oktenil sukcinatom i izolatom pšeničnih proteina (p0,05)

    Frequency Offset Estimation and Training Sequence Design for MIMO OFDM

    Full text link
    corecore