135 research outputs found

    Surface-induced ferromagnetism and anomalous Hall transport at Zr2S(001)

    Full text link
    Two-dimensional layered electrides possessing anionic excess electrons in the interstitial spaces between cationic layers have attracted much attention due to their promising opportunities in both fundamental research and technological applications. Using first-principles calculations, we predict that the layered bulk electride Zr2S is nonmagnetic with massive Dirac nodal-line states arising from Zr-4d cationic and interlayer anionic electrons. However, the Zr2S(001) surface increases the density of states at the Fermi level caused by the surface potential, thereby inducing a ferromagnetic order at the outermost Zr layer via the Stoner instability. Consequently, the time-reversal symmetry breaking at the surface not only generates highly spin-polarized topological surface states with intricate helical spin textures, but also hosts an intrinsic anomalous Hall effect originating from the Berry curvature generated by spin-orbit coupling. Our findings offer a playground to investigate the emergence of ferromagnetism and anomalous Hall transport at the surface of nonmagnetic topological electrides

    Upregulation of lncRNA NR_046683 Serves as a Prognostic Biomarker and Potential Drug Target for Multiple Myeloma

    Get PDF
    Aim: To investigate the prognostic value of lncRNA NR_046683 in multiple myeloma (MM).Methods: High-throughput lncRNA array was combined with bioinformatics techniques to screen differentially expressed lncRNA in MM. qRT-PCR was adopted to determine the expression of target lncRNAs in MM patients and controls.Results: It was found for the first time that lncRNA NR_046683 is closely related to the prognosis of MM. It was also detected in tumor cell lines KM3, U266, especially in drug-resistant cell lines KM3/BTZ and MM1R. The NR_046683 expression differed significantly in patients of different MM subtypes and staging. Moreover, the overexpression of NR-046683 is closely related to β2-microglobulin. We also found that the overexpression of NR-046683 correlates to chromosomal aberrations, such as del(13q14), gain 1q21, and t(4;14).Conclusion: lncRNA NR_046683 can serve as a novel biomarker for potential drug target and prognostic prediction in MM

    Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

    Full text link
    Most recent semantic segmentation methods adopt a fully-convolutional network (FCN) with an encoder-decoder architecture. The encoder progressively reduces the spatial resolution and learns more abstract/semantic visual concepts with larger receptive fields. Since context modeling is critical for segmentation, the latest efforts have been focused on increasing the receptive field, through either dilated/atrous convolutions or inserting attention modules. However, the encoder-decoder based FCN architecture remains unchanged. In this paper, we aim to provide an alternative perspective by treating semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer (ie, without convolution and resolution reduction) to encode an image as a sequence of patches. With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR). Extensive experiments show that SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes. Particularly, we achieve the first position in the highly competitive ADE20K test server leaderboard on the day of submission.Comment: CVPR 2021. Project page at https://fudan-zvg.github.io/SETR

    Research Progress on the Application of Spectroscopy in Meat Spoilage Detection

    Get PDF
    The growth and metabolism of microorganisms is the main cause of meat spoilage. The rapid and nondestructive techniques for detecting microorganisms in meat have attracted more and more attentions. Spectroscopic techniques such as Raman spectroscopy, infrared spectroscopy and spectral imaging show great advantages in rapid and non-destructive detection, but their application in meat spoilage detection has not been timely summarized. Based on an overview of the dominant spoilage organisms and microbial metabolism in meat under different storage conditions, this paper briefly describes the material basis for spectroscopic prediction of meat spoilage. Then, the application of Raman spectroscopy, infrared spectroscopy and spectral imaging technology in predicting the shelf life of meat is summarized. The efficiency of predictive modeling of meat shelf life based on total bacterial count or total volatile basic nitrogen (TVB-N) content and problems existing in this field are highlighted. We anticipate that this review will provide new ideas and theoretical guidance for the development and application of rapid and nondestructive techniques for meat spoilage identification

    Preparation of a New Borehole Sealing Material of Coal Seam Water Infusion

    Get PDF
    To improve the borehole sealing effect of coal seam water infusion, especially that of coal seam with low permeability and high rigidity, this study investigated the performance test optimization of two cement-based sealing materials. The borehole sealing effect of this coal seam requires high-pressure water infusion. Result shows that when the water-cement ratio is 0.4 and the amount of fiber expansive agent is 10%, the new borehole sealing material displays microexpansion. In addition, the 1-day compressive strength reaches 16 MPa. This result satisfies the material compressive strength requirement under 30 MPa high-pressure water infusion. The sealing performance is also excellent. According to the scanning electron microscopy analysis of new borehole and traditional borehole sealing materials, the surface of new borehole sealing material shows no holes and possesses compactness. The sealing effect is superior to that of other traditional sealing materials. This effect can satisfy the sealing requirement of coal seam water infusion. The new borehole sealing material is considerably significant for the improvement of the water infusion effect

    Effect of Ultimate pH on Postmortem Myofibrillar Protein Degradation and Meat Quality Characteristics of Chinese Yellow Crossbreed Cattle

    Get PDF
    This paper describes the complex effects of postmortem ultimate pH (pHu) on Chinese Yellow crossbreed cattle quality during postmortem ageing and provides an explanation of how pHu affects beef tenderness. High pHu beef had the highest initial tenderness (P<0.05) compared with other groups at 1 day postmortem. Intermediate and low pHu beef had similar initial WBSF at 1 day postmortem, but intermediate pHu beef had slower tenderization rate than low pHu beef (P<0.05). Purge loss, cooking loss, L*, a*, and b* values decreased with increasing pHu during ageing (P<0.05). Myofibril fragmentation index (MFI) was higher in high pHu beef than intermediate and low pHu beef throughout ageing (P<0.05). Protein degradation studies found that desmin and troponin-T appeared degraded within 0.5 h postmortem for high and low pHu beef, compared to >2 days for intermediate pHu beef. Overall, Chinese Yellow crossbred cattle tenderness is related to pHu, which may be affected by proteolytic enzymatic activity. Therefore, pHu may be used to predict beef tenderness and other quality characteristics during postmortem ageing. To achieve consistent tenderness, different ageing times should be used, depending on pHu
    • …
    corecore