176 research outputs found

    Chinese Subjective Sentence Extraction Based on Dictionary and Combination Classifiers

    Get PDF
    AbstractFor extracting of Chinese subjective sentence, this paper proposes a new dictionary-based extraction method and a novel classifier combination strategy. For the first method, we use the training data to score the subjective dictionary, which was composed of indicative verb, indicative adverbs, sentiment words, interjection and punctuation. Then we use the dictionary to score the test data, and filter the sentences by setting a reasonable threshold. New classifier combination strategies base on the maximum error correction capability. To enhance the accuracy, the method improves the traditional single error correction and achieves the dual error correction both in positive and negative classes. Experimental results show that the two methods are effective .And the final results show that the combination of two ways achieves a satisfactory subjective sentence extraction performance

    Quantifying Degree of Sensitization in Aluminum Alloys using Acoustic Resonance and EMAT Ultrasound

    Get PDF
    Sensitization of 5xxx series aluminum alloys is characterized by the gradual precipitation of the alloying element magnesium as a beta phase (Al3Mg2) along the grain boundaries after prolonged exposure to the environment. While the 5xxx alloy is corrosion resistant, these beta phases are corrosive and thus their formation increases the susceptibility of the alloy to intergranular corrosion and stress corrosion cracking. The standardized approach for measuring the degree of sensitization (DoS) is the ASTM G67 test standard. This test, however, is time consuming, difficult to perform, and destructive as it involves measurement of a mass loss after exposing the alloy to a nitric acid solution. Given the limitations of this test standard, there is a need to develop a nondestructive evaluation (NDE) solution that is easy-to-use, non-intrusive, and faster than current inspection methods while suitable for use outside a laboratory. This paper describes an NDE method for quantifying the DoS value in an alloy using ultrasonic measurements. The work builds upon prior efforts described in the literature which use electromagnetic acoustic transducers (EMATs) to quantify DoS based on velocity and attenuation measurements. These approaches used conventional ultrasonic inspection techniques with short-duration excitation signals (less than 3 cycles) to allow identification of the echo time-of-flight and amplitude decay pattern, but their success was limited by EMAT transducer inefficiency in general and especially at higher frequencies. To overcome these challenges, this paper presents a modified ultrasonic measurement strategy using long-duration excitation signals (greater than 100 cycles), where multiple reverberations in the material overlap. By sweeping through test frequencies, it is possible to establish an acoustic resonance when the wavelength is an integer multiple of twice the material thickness. This approach allows for greatly improved signal to noise ratios as well as higher frequency operation since the reverberations will constructively interfere at resonance. The measurement approach was evaluated on a large number of 5083 and 5456 aluminum alloys specimens that were sensitized to varying DoS values and compared to G67 test results. Relationships between DoS values and the ultrasonic velocity and attenuation were established

    Fabrication of periodic nanostructures using dynamic plowing lithography with the tip of an atomic force microscope

    Get PDF
    The fabrication of periodic nanostructures with a fine control of their dimensions is performed on poly(methyl methacrylate) (PMMA) thin films using an atomic force microscope technique called dynamic plowing lithography (DPL). Different scratching directions are investigated first when generating single grooves with DPL. In particular, the depth, the width and the periodicity of the machined grooves as well the height of the pile-up, formed on the side of the grooves, are assessed. It was found that these features are not significantly affected by the scratching direction, except when processing took place in a direction away from the cantilever probe and parallel to its main axis. For a given scratching direction, arrays of regular grooves are then obtained by controlling the feed, i.e. the distance between two machining lines. A scan-scratch tip trace is also used to reduce processing time and tip wear. However, irregular patterns are created when combining two layers oriented at different angles and where each layer defines an array of grooves. Thus, a “combination writing” method was implemented to fabricate arrays of grooves with a well-defined wavelength of 30 nm, which was twice the feed value utilized. Checkerboard, diamond-shaped, and hexagonal nanodots were also fabricated. These were obtained by using the combination writing method and by varying the orientation and the number of layers. The density of the nanodots achieved could be as high as 1.9 × 109 nanodots per mm2

    A simulated investigation of ductile response of GaAs in single point diamond turning and experimental validation

    Get PDF
    In this paper, molecular dynamic (MD) simulation was adopted to study the ductile response of single-crystal GaAs during single-point diamond turning (SPDT). The variations of cutting temperature, coordination number, and cutting forces were revealed through MD simulations. SPDT experiment was also carried out to qualitatively validate MD simulation model from the aspects of normal cutting force. The simulation results show that the fundamental reason for ductile response of GaAs during SPDT is phase transition from a perfect zinc blende structure (GaAs-I) to a rock-salt structure (GaAs-II) under high pressure. Finally, a strong anisotropic machinability of GaAs was also found through MD simulations

    Fabrication of periodic nanostructures using AFM tip-based nanomachining: combining groove and material pile-Up topographies

    Get PDF
    This paper presents an atomic force microscopy (AFM) tip-based nanomachining method to fabricate periodic nanostructures. This method relies on combining the topography generated by machined grooves with the topography resulting from accumulated pile-up material on the side of these grooves. It is shown that controlling the distance between adjacent and parallel grooves is the key factor in ensuring the quality of the resulting nanostructures. The presented experimental data show that periodic patterns with good quality can be achieved when the feed value between adjacent scratching paths is equal to the width between the two peaks of material pile-up on the sides of a single groove. The quality of the periodicity of the obtained nanostructures is evaluated by applying one- and two-dimensional fast Fourier transform (FFT) algorithms. The ratio of the area of the peak part to the total area in the normalized amplitude–frequency characteristic diagram of the cross-section of the measured AFM image is employed to quantitatively analyze the periodic nanostructures. Finally, the optical effect induced by the use of machined periodic nanostructures for surface colorization is investigated for potential applications in the fields of anti-counterfeiting and metal sensing

    AFM tip-based nanomachining with increased cutting speed at the tool-workpiece interface

    Get PDF
    This paper reports a study towards enhancing the throughput of the Atomic Force Microscope (AFM) tip-based nanomachining process by increasing the cutting speed at the interface between the tool and the workpiece. A modified AFM set-up was implemented, which combined the fast reciprocating motions of a piezoelectric actuator, on which the workpiece was mounted, and the linear displacement of the AFM stage, which defined the length of produced grooves. The influence of the feed, the feed direction and the cutting speed on the machined depth and on the chip formation was studied in detail when machining poly(methyl methacrylate). A theoretical cutting speed over 5 m/min could be achieved with this set-up when the frequency of the piezoelectric actuator reciprocating motions was 40 kHz. This is significantly better than the state of the art for AFM-based nanomachining, which is currently less than 1 m/min.</p

    Just ClozE! A Novel Framework for Evaluating the Factual Consistency Faster in Abstractive Summarization

    Full text link
    The issue of factual consistency in abstractive summarization has received extensive attention in recent years, and the evaluation of factual consistency between summary and document has become an important and urgent task. Most of the current evaluation metrics are adopted from the question answering (QA) or natural language inference (NLI) task. However, the application of QA-based metrics is extremely time-consuming in practice while NLI-based metrics are lack of interpretability. In this paper, we propose a cloze-based evaluation framework called ClozE and show the great potential of the cloze-based metric. It inherits strong interpretability from QA, while maintaining the speed of NLI- level reasoning. We demonstrate that ClozE can reduce the evaluation time by nearly 96% relative to QA-based metrics while retaining their interpretability and performance through experiments on six human-annotated datasets and a meta-evaluation benchmark GO FIGURE (Gabriel et al., 2021). Finally, we discuss three important facets of ClozE in practice, which further shows better overall performance of ClozE compared to other metrics.Comment: The manuscript for JAI

    Macro and nanoscale wear behaviour of Al-Al 2 O 3 nanocomposites fabricated by selective laser melting

    Get PDF
    Aluminium-based composites are increasingly applied within the aerospace and automotive industries. Tribological phenomena such as friction and wear, however, negatively affect the reliability of devices that include moving parts; the mechanisms of friction and wear are particularly unclear at the nanoscale. In the present work, pin-on-disc wear testing and atomic force microscopy nanoscratching were performed to investigate the macro and nanoscale wear behaviour of an Al-Al2O3 nanocomposite fabricated using selective laser melting. The experimental results indicate that the Al2O3 reinforcement contributed to the macroscale wear-behaviour enhancement for composites with smaller wear rates compared to pure Al. Irregular pore surfaces were found to result in dramatic fluctuations in the frictional coefficient at the pore position within the nanoscratching. Both the size effect and the working-principle difference contributed to the difference in frictional coefficients at both the macroscale and the nanoscale

    Processing outcomes of the AFM probe-based machining approach with different feed directions

    Get PDF
    We present experimental and theoretical results to describe and explain processing outcomes when producing nanochannels that are a few times wider than the atomic force microscope (AFM) probe using an AFM. This is achieved when AFM tip-based machining is performed with reciprocating motion of the tip of the AFM probe. In this case, different feed directions with respect to the orientation of the AFM probe can be used. The machining outputs of interest are the chip formation process, obtained machined quality, and variation in the achieved channel depth. A three-sided pyramidal diamond probe was used under load-controlled conditions. Three feed directions were first investigated in detail. The direction parallel to and towards the probe cantilever, which is defined as “edge forward”, was then chosen for further investigation because it resulted in the best chip formation, machining quality, and material removal efficiency. To accurately reveal the machining mechanisms, several feed directions with different included angles for the pure edge-forward direction were investigated. Upon analysis of the chips and the machined nanochannels, it was found that processing with included angles in the range 0–30° led to high-quality channels and high material-removal efficiency. In this case, the cutting angles, such as the rake angle, clearance angle, and shear angle, have an important influence on the obtained results. In addition, a machining model was developed to explain the observed machined depth variation when scratching in different feed directions
    • …
    corecore