3 research outputs found

    Highly sensitive temperature sensor using packaged optical microfiber coupler filled with liquids

    Get PDF
    A novel temperature sensor based on a Teflon capillary encapsulated 2 × 2 optical microfiber coupler (OMC) filled with refractive index matching liquids is described. The sealed capillary and the filling liquid are demonstrated to enhance the temperature sensing performance, achieving a high temperature sensitivity of 5.3 nm/°C. To the best of our knowledge, the temperature sensor described in this article exhibits the highest sensitivity among the OMC structure based fiber optic temperature sensors. Experimental results also show that it has good repeatability along with a fast response time of 243 ms

    High sensitivity temperature sensor based on singlemode no-core-singlemode fibre structure and alcohol

    Get PDF
    A high sensitivity temperature sensor based on a singlemode-no-core-singlemode (SNCS) fibre structure and surrounded with alcohol within a silica capillary is described. In this investigation, no-core fibre (NCF) is used as the multimode waveguide and alcohol is chosen as the temperature sensitive medium. By packaging the alcohol solution with a short length of NCF enclosed within a silica capillary, the surrounding temperature can be detected by monitoring the variations of transmission loss at a specific wavelength. The theoretical analysis predicts this temperature sensor can provide high sensitivity, and the experimental results support this. The maximum temperature sensitivity of the sample is 0.49 dB/°C with a potential temperature resolution of 0.02 °C at the operating wavelength of 1545.9 nm. In addition, the repeatability and response time of the sensor of this investigation are investigated experimentally

    A microfiber knot incorporating a tungsten disulfide saturable absorber based multi-wavelength mode-locked erbium-doped fiber laser

    Get PDF
    A novel multi-wavelength mode-locked Erbium-doped fiber laser with tungsten disulfide (WS2) combined with a microfiber knot is described. This hybrid fiber structure facilitates strong light matter interaction between the saturated absorption of the WS2 material and high optical non-linearity of the microfiber knot. It is demonstrated experimentally that the novel fiber laser works stably in the absence of an external comb filter, with the generation of stable multi-wavelength picosecond pulses. In the multi-wavelength lasing regime, up to 7-wavelength stable mode-locked pulses are obtained using a polarization controller with the pump power at ~250 mW. The pulse period and the pulse width are 188.7 ns and 16.3 ps respectively. In addition, the number of multi-wavelength lasing channels can be changed by simply adjusting the microfiber knot size. Experimental results show the laser to have a stable output over 12 hours recording period. The results of this investigation demonstrate that the optical microfiber knot with a WS2 overlay based fiber laser device can operate as a highly nonlinear optical component and a saturable absorber. The proposed multi-wavelength lasing device can therefore be widely used for non-linear and ultrafast photonics and has a number of advantages compared to similar devices using more conventional technologies, including low cost and good stabilit
    corecore