86 research outputs found
High-Brightness and Color-Tunable FAPbBr(3) Perovskite Nanocrystals 2.0 Enable Ultrapure Green Luminescence for Achieving Recommendation 2020 Displays
To best catch human eyes in next-generation displays, the updated recommendation 2020 (Rec. 2020) standard has called for ultrapure green emitters to be qualified with a narrow emission of 525-535 nm with a full width at half-maximum (fwhm) below 25 nm. However, it is still challenging to find an emitter which can simultaneously cover these two criteria. Instead of traditional II-VI group semiconductor quantum dots, perovskite nanocrystals (NCs) can render versatile emitting tunability to allow them access to the Rec. 2020 standard. Herein, to realize the critical window of Rec. 2020, we have proposed a scalable, room temperature synthesis route of formamidinium lead bromide (FAPbBr3) NCs using a sole ligand of sulfobetaine-18 (SBE-18). The as-synthesized FAPbBr3 NCs exhibit an ideal emission at 534 nm with an ultranarrow fwhm of 20.5 nm and a high photoluminescence quantum yield of 90.6%, overwhelming the FAPbBr3 nanoplates capped with oleic acid/oleylamine (OA/OAM). Introducing these high quality NCs into backlight displays, an ultrapure green backlight which covers ≈85.7% of the Rec. 2020 standard in the CIE 1931 color space is achieved, signifying the "greenest" backlight till now. Thus, we can foresee perovskite NCs as the most potential candidates for next-generation displays
Surface mediated ligands addressing bottleneck of room-temperature synthesized inorganic perovskite nanocrystals toward efficient light-emitting diodes
Cesium lead halide perovskites (CsPbX3) have become superior candidates for perspective optoelectronic applications. However, room temperature synthesized CsPbX3 nanocrystals (NCs) suffer from serious lattice/surface traps, mostly induced by nonequilibrium reactions and polar solvent systems. Thus, direct assembly of such poor crystals cannot be available toward high efficiency light emitting diodes (LEDs). To address this issue, differing from the general post-treatment works, here we propose a double-terminal diamine bromide salt to in situ passivate the surface traps of room temperature synthesized CsPbBr3 NCs. High-quality NC solutions with photoluminescence quantum yield (PLQY) beyond 90% are obtained owing to the renovated surface bromide vacancies. Meanwhile, instead of longer oleylamine (OLA) ligand, the abridged diamine bromine ligand could significantly enhance charge transport throughout the NC film. In addition, the NC based LED performance is found related to chain length of the ligand, where the optimal luminance of 14021 Cd m(-2) and current efficiency of 25.5 Cd A(-1) are achieved by 1, 4-butanediamine bromide passivated NC devices. This work provides a direct efficient approach to meet the device application of room temperature synthesized perovskite NCs, underlines the significance of selective ligands to address the challenges of NC emitters in future displays and solid-state lighting
miR-144/451 represses the LKB1/AMPK/mTOR pathway to promote red cell precursor survival during recovery from acute anemia
The microRNAs miR-144 and -451 are encoded by a bicistronic gene that is strongly induced during red blood cell formation (erythropoiesis). Ablation of the miR-144/451 gene in mice causes mild anemia under baseline conditions. Here we show that miR-144/451−/− erythroblasts exhibit increased apoptosis during recovery from acute anemia. Mechanistically, miR-144/451 depletion increases the expression of the miR-451 target mRNA Cab39, which encodes a co-factor for the serine-threonine kinase LKB1. During erythropoietic stress, miR-144/451−/− erythroblasts exhibit abnormally increased Cab39 protein, which activates LKB1 and its downstream AMPK/mTOR effector pathway. Suppression of this pathway via drugs or shRNAs enhances survival of the mutant erythroblasts. Thus, miR-144/451 facilitates recovery from acute anemia by repressing Cab39/AMPK/mTOR. Our findings suggest that miR-144/451 is a key protector of erythroblasts during pathological states associated with dramatically increased erythropoietic demand, including acute blood loss and hemolytic anemia
Limb development genes underlie variation in human fingerprint patterns
Fingerprints are of long-standing practical and cultural interest, but little is known about the mechanisms that underlie their variation. Using genome-wide scans in Han Chinese cohorts, we identified 18 loci associated with fingerprint type across the digits, including a genetic basis for the long-recognized “pattern-block” correlations among the middle three digits. In particular, we identified a variant near EVI1 that alters regulatory activity and established a role for EVI1 in dermatoglyph patterning in mice. Dynamic EVI1 expression during human development supports its role in shaping the limbs and digits, rather than influencing skin patterning directly. Trans-ethnic meta-analysis identified 43 fingerprint-associated loci, with nearby genes being strongly enriched for general limb development pathways. We also found that fingerprint patterns were genetically correlated with hand proportions. Taken together, these findings support the key role of limb development genes in influencing the outcome of fingerprint patterning
Postmortem analysis of MgO–C bricks used in smelting furnace for fabricating TiC-bearing slag
The process of “high temperature carbonization and low temperature chlorination”, considered as one of the most promising technologies, can extract over 60% titanium from blast furnace slag containing TiO2 at a concentration of 20%–25%. The primary equipment for high temperature carbonization is an electric furnace lined with MgO–C bricks. In this study, post-mortem analysis was conducted to investigate the corrosion and failure mechanisms of MgO–C refractory bricks taken from different areas of a circular electric furnace after 1200 cycles of service. Through XRD, SEM-EDS, and thermodynamic calculation analysis, the reaction and corrosion mechanism between MgO–C bricks and the slag were analyzed. The results demonstrated that the gradual corrosion of the brick was primarily attributed to the alternating effects of carbon oxidation and MgO dissolution. Moreover, an increase in temperature led to a higher corrosion rate of the refractories. At temperatures exceeding 1560 °C, the pre-formed barrier layer composed of MgAl2O4 and MgTi2O4 melted into the slag. And as TiO2 content decreased and TiC content increased, there was a gradual decline in the erosive impact of the slag. Furthermore, the failure mechanisms of refractory bricks in different areas varied due to the distinctive structure of the electric furnace. The bricks at the slag line area were mainly destroyed by slag corrosion, oxidation and thermal shock spalling, which had the shortest service life
Effect of Roasting Temperature on Phase Transformation in Co-Reduction Roasting of Nickel Slag
Nickel slag and blast furnace dust comprise a large part of solid waste produced by the metallurgical industry. In this study, a novel method of co-reduction roasting followed by grinding/magnetic separation was proposed to collaboratively reutilize nickel slag and blast furnace dust. The nickel slag was combined with blast furnace dust to produce a Ni-Fe alloy containing Cu component by using the proposed method. In addition, the blast furnace dust acted not only as a reductant but also as an Fe resource. Results in this work showed that 81.62% Fe and 89% Ni could be recovered from nickel slag and blast furnace dust, and a Ni-Fe alloy product with 93.03 wt% Fe, 0.86 wt% Ni, and 0.49 wt% Cu could be obtained under optimal conditions in this study. The effect of roasting temperature on phase transformation was characterized and analyzed by XRD and SEM-EDS. The results illustrated that roasting temperature was considered as the main influence to regulate the mineral phase transformation and microstructural change in roasted product. The minerals in the nickel slag finally transformed iron and augite from fayalite containing magnesium and magnetite after the disappearance/transformation of the mineral phase. The Fe-bearing minerals were first reduced in situ position of structure into metallic Fe particles and then grown into a Ni-Fe alloy with Cu of chain structure. The new structure, instead of the original structure, formed the homogeneous slag phase and Ni-Fe alloy with Cu component
Experimental Study on Cracking Behaviour and Strength Properties of an Expansive Soil under Cyclic Wetting and Drying
Expansive soil is characterized by its unique structural morphology and drastic volume change. With infrastructure increasingly constructed in expansive soil areas, engineering problems caused by the properties of expansive soils have attracted more attention. Cyclic wetting-drying and shear testing were accordingly conducted on an expansive soil from Chengdu area in China. Crack development and shear strength change were analyzed using the Mohr–Coulomb equation for shear strength by fitting the experimental data. The results show the following: (1) With the increase in wetting-drying cycles, the crack ratio increases, the shear strength decreases, and the shear strength parameters gradually decrease at the same rate of change. The applied vertical load reduces the weakening effect of the wetting-drying cycles on the soil structure and strength by restraining the expansion and contraction deformation. (2) By analyzing the number of wetting-drying cycles and the crack images, the crack development (length, direction, etc.) of the expansive soil can be predicted and described. (3) There is a specific linear correlation between the crack ratio and strength that approached a limit value with ongoing wetting-drying cycles. The strength of the expansive soil can therefore be obtained based on crack development, improving the ability of designers to account for the behaviour of expansive soils
- …