3 research outputs found

    Ultra-high pressure balloon angioplasty for pulmonary artery stenosis in children with congenital heart defects: Short- to mid-term follow-up results from a retrospective cohort in a single tertiary center

    Get PDF
    ObjectiveBalloon angioplasty (BA) has been the treatment of choice for pulmonary artery stenosis (PAS) in children. There remains, however, a significant proportion of resistant lesions. The ultra-high pressure (UHP) balloons might be effective in a subset of these lesions. In this study, we analyzed the safety and efficacy with short- to mid-term follow-up results of UHP BA for PAS in children with congenital heart defects (CHD) in our center.MethodsThis is a retrospective cohort study in a single tertiary heart center. Children diagnosed with PAS associated with CHD were referred for UHP BA. All data with these children were collected for analysis with updated follow-up.ResultsA total of 37 UHP BAs were performed consecutively in 28 children. The success rate was 78.4%. A significantly (P = 0.005) larger ratio of the balloon to the minimal luminal diameter at the stenotic waist (balloon/waist ratio) was present in the success group (median 3.00, 1.64–8.33) compared to that in the failure group (median 1.94, 1.41 ± 4.00). Stepwise logistic regression analysis further identified that the balloon/waist ratio and the presence of therapeutic tears were two independent predictors of procedural success. The receiver operating characteristic curve revealed a cut-off value of 2.57 for the balloon/waist ratio to best differentiate success from failure cases. Signs of therapeutic tears were present in eight cases, all of whom were in the success group. Perioperative acute adverse events were recorded in 16 patients, including 11 pulmonary artery injuries, three pulmonary hemorrhages, and two pulmonary artery aneurysms. During a median follow-up period of 10.4 (0.1–21.0) months, nine cases experienced restenosis at a median time of 40 (4–325) days after angioplasty.ConclusionsThe UHP BA is safe and effective for the primary treatment of PAS in infants and children with CHD. The success rate is high with a low incidence of severe complications. The predictors of success are a larger balloon/waist ratio and the presence of therapeutic tears. The occurrence of restenosis during follow-up, however, remains a problem. A larger number of cases and longer periods of follow-up are needed for further study

    Articulatory-to-Acoustic Conversion of Mandarin Emotional Speech Based on PSO-LSSVM

    No full text
    The production of emotional speech is determined by the movement of the speaker’s tongue, lips, and jaw. In order to combine articulatory data and acoustic data of speakers, articulatory-to-acoustic conversion of emotional speech has been studied. In this paper, parameters of LSSVM model have been optimized using the PSO method, and the optimized PSO-LSSVM model was applied to the articulatory-to-acoustic conversion. The root mean square error (RMSE) and mean Mel-cepstral distortion (MMCD) have been used to evaluate the results of conversion; the evaluated result illustrates that MMCD of MFCC is 1.508 dB, and RMSE of the second formant (F2) is 25.10 Hz. The results of this research can be further applied to the feature fusion of emotion speech recognition to improve the accuracy of emotion recognition

    Oxygen Vacancy-Mediated Selective H<sub>2</sub>S Oxidation over Co-Doped LaFe<sub>x</sub>Co<sub>1−x</sub>O<sub>3</sub> Perovskite

    No full text
    Compared to the Claus process, selective H2S catalytic oxidation to sulfur is a promising reaction, as it is not subject to thermodynamic limitations and could theoretically achieve ~100% H2S conversion to sulfur. In this study, we investigated the effects of Co and Fe co-doping in ABO3 perovskite on H2S selective catalytic oxidation. A series of LaFexCo1−xO3 (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0) perovskites were synthesized by the sol-gel method. Compared to LaFeO3 and LaCoO3, co-doped LaFexCo1−xO3 significantly improved the H2S conversion and sulfur selectivity at a lower reaction temperature. Nearly 100% sulfur yield was achieved on LaFe0.4Co0.6O3 under 220 °C with exceptional catalyst stability (above 95% sulfur yield after 77 h). The catalysts were characterized by XRD, BET, FTIR, XPS, and H2-TPR. The characterization results showed that the structure of LaFexCo1−xO3 changed from the rhombic phase of LaCoO3 to the cubic phase of LaFeO3 with Fe substitution. Doping with appropriate iron (x = 0.4) facilitates the reduction of Co ions in the catalyst, thereby promoting the H2S selective oxidation. This study demonstrates a promising approach for low-temperature H2S combustion with ~100% sulfur yield
    corecore