1,808 research outputs found

    tissue of rat adjuvant-induced arthritis

    Get PDF
    Triptolide has been clinically used to treat patients with rheumatoid arthritis, in which chemokine receptors play an important role in immune and inflammatory responses. To investigate the effect of triptolide on CCR5, we used complete Freund’s adjuvant to produce adjuvant-induced arthritis (AIA) in rats. Our data show that both CCR5 mRNA and protein levels in synovial tissue of rats with AIA are significantly higher than those in normal rats. Triptolide can significantly inhibit rat AIA-induced overexpression of CCR5 at both mRNA and protein levels. These results may contribute to better understanding of the therapeutic effects of triptolide in rheumatoid arthritis. Key words: triptolide, CCR5, adjuvant induced arthritis, rheumatoid arthriti

    Controllable terahertz radiation from a linear-dipole-array formed by a two-color laser filament in air

    Get PDF
    We have demonstrated the effective control on carrier-envelope phase, angular distribution as well as peak intensity of a nearly single-cycle terahertz pulse emitted from a laser filament formed by two-color, the fundamental and the corresponding second harmonics, femtosecond laser pulses propagating in air. Experimentally, such control has been performed by varying the filament length and the initial phase difference between the two-color laser components. A linear-dipole-array model, including the descriptions of the both generation (via laser field ionization) and propagation of the emitted terahertz pulse, is proposed to present a quantitative interpretation of the observations. Our results contribute to the understanding of terahertz generation in a femtosecond laser filament and suggest a practical way to control the electric field of terahertz pulse for potential applications

    Regulation of p53: a collaboration between Mdm2 and MdmX

    Get PDF
    p53 plays an important role in the regulation of the cell cycle, DNA repair, and apoptosis and is an attractive cancer therapeutic target. Mdm2 and Mdmx are recognized as the main p53 negative regulators. Although it is still unknown why Mdm2 and Mdmx both are required for p53 degradation, a model has been proposed whereby these two proteins function independent of one another; Mdm2 acts as an E3 ubiquitin ligase that catalyzes the ubiquitination of p53 for degradation, whereas Mdmx inhibits p53 by binding to and masking the transcriptional activation domain of p53, without causing its degradation. However, Mdm2 and Mdmx have been shown to function collaboratively. In fact, recent studies have pointed to a more important role for an Mdm2/Mdmx co-regulatory mechanism for p53 regulation than previously thought. In this review, we summarize current progress in the field about the functional and physical interactions between Mdm2 and Mdmx, their individual and collaborative roles in controlling p53, and inhibitors that target Mdm2 and Mdmx as a novel class of anticancer therapeutics

    Relaxation of the one child policy and trends in caesarean section rates and birth outcomes in China between 2012 and 2016: observational study of nearly seven million health facility births.

    Get PDF
    OBJECTIVE: To examine how the relaxation of the one child policy and policies to reduce caesarean section rates might have affected trends over time in caesarean section rates and perinatal and pregnancy related mortality in China. DESIGN: Observational study. SETTING: China's National Maternal Near Miss Surveillance System (NMNMSS). PARTICIPANTS: 6 838 582 births at 28 completed weeks or more of gestation or birth weight ≥1000 g in 438 hospitals in the NMNMSS between 2012 and 2016. MAIN OUTCOME MEASURES: Obstetric risk was defined using a modified Robson classification. The main outcome measures were changes in parity and age distributions and relative frequency of each Robson group, crude and adjusted trends over time in caesarean section rates within each risk category (using Poisson regression with a robust variance estimator), and trends in perinatal and pregnancy related mortality over time. RESULTS: Caesarean section rates declined steadily between 2012 and 2016 (crude relative risk 0.91, 95% confidence interval 0.89 to 0.93), reaching an overall hospital based rate of 41.1% in 2016. The relaxation of the one child policy was associated with an increase in the proportion of multiparous births (from 34.1% in 2012 to 46.7% in 2016), and births in women with a uterine scar nearly doubled (from 9.8% to 17.7% of all births). Taking account of these changes, the decline in caesarean sections was amplified over time (adjusted relative risk 0.82, 95% confidence interval 0.81 to 0.84). Caesarean sections declined noticeably in nulliparous women (0.75, 0.73 to 0.77) but also declined in multiparous women without a uterine scar (0.65, 0.62 to 0.77). The decrease in caesarean section rates was most pronounced in hospitals with the highest rates in 2012, consistent with the government's policy of targeting hospitals with the highest rates. Perinatal mortality declined from 10.1 to 7.2 per 1000 births over the same period (0.87, 0.83 to 0.91), and there was no change in pregnancy related mortality over time. CONCLUSIONS: China is the only country that has succeeded in reverting the rising trends in caesarean sections. China's success is remarkable given that the changes in obstetric risk associated with the relaxation of the one child policy would have led to an increase in the need for caesarean sections. China's experience suggests that change is possible when strategies are comprehensive and deal with the system level factors that underpin overuse as well as the various incentives at work during a clinical encounter

    Identification and Characterization of a Broadly Cross-Reactive HIV-1 Human Monoclonal Antibody That Binds to Both gp120 and gp41

    Get PDF
    Identification of broadly cross-reactive HIV-1-neutralizing antibodies (bnAbs) may assist vaccine immunogen design. Here we report a novel human monoclonal antibody (mAb), designated m43, which co-targets the gp120 and gp41 subunits of the HIV-1 envelope glycoprotein (Env). M43 bound to recombinant gp140 s from various primary isolates, to membrane-associated Envs on transfected cells and HIV-1 infected cells, as well as to recombinant gp120 s and gp41 fusion intermediate structures containing N-trimer structure, but did not bind to denatured recombinant gp140 s and the CD4 binding site (CD4bs) mutant, gp120 D368R, suggesting that the m43 epitope is conformational and overlaps the CD4bs on gp120 and the N-trimer structure on gp41. M43 neutralized 34% of the HIV-1 primary isolates from different clades and all the SHIVs tested in assays based on infection of peripheral blood mononuclear cells (PBMCs) by replication-competent virus, but was less potent in cell line-based pseudovirus assays. In contrast to CD4, m43 did not induce Env conformational changes upon binding leading to exposure of the coreceptor binding site, enhanced binding of mAbs 2F5 and 4E10 specific for the membrane proximal external region (MPER) of gp41 Envs, or increased gp120 shedding. The overall modest neutralization activity of m43 is likely due to the limited binding of m43 to functional Envs which could be increased by antibody engineering if needed. M43 may represent a new class of bnAbs targeting conformational epitopes overlapping structures on both gp120 and gp41. Its novel epitope and possibly new mechanism(s) of neutralization could helpdesign improved vaccine immunogens and candidate therapeutics

    GIF Video Sentiment Detection Using Semantic Sequence

    Get PDF

    Inactivation of the MDM2 RING domain enhances p53 transcriptional activity in mice

    Get PDF
    The MDM2 RING domain harbors E3 ubiquitin ligase activity critical for regulating the degradation of tumor suppressor p53, which controls many cellular pathways. The MDM2 RING domain also is required for an interaction with MDMX. Mice containing a substitution in the MDM2 RING domain, MDM2C462A, disrupting MDM2 E3 function and the MDMX interaction, die during early embryogenesis that can be rescued by p53 deletion. To investigate whether MDM2C462A, which retains p53 binding, has p53-suppressing activity, we generated Mdm2C462A/C462A;p53ER/- mice, in which we replaced the endogenous p53 alleles with an inducible p53ER/- allele, and compared survival with that of similarly generated Mdm2-/-;p53ER/- mice. Adult Mdm2-null mice died ~7 days after tamoxifen-induced p53 activation, indicating that in the absence of MDM2, MDMX cannot suppress p53. Surprisingly, Mdm2C462A/C462A;p53ER/- mice died ~5 days after tamoxifen injection, suggesting that p53 activity is higher in the presence of MDM2C462A than in the absence of MDM2. Indeed, in MDM2C462A-expressing mouse tissues and embryonic fibroblasts, p53 exhibited higher transcriptional activity than in those expressing no MDM2 or no MDM2 and MDMX. This observation indicated that MDM2C462A not only is unable to suppress p53 but may have gained the ability to enhance p53 activity. We also found that p53 acetylation, a measure of p53 transcriptional activity, was higher in the presence of MDM2C462A than in the absence of MDM2. These results reveal an unexpected role of MDM2C462A in enhancing p53 activity and suggest the possibility that compounds targeting MDM2 RING domain function could produce even more robust p53 activation
    corecore