24 research outputs found
Association between borderline dysnatremia and mortality insight into a new data mining approach
Abstract Background Even small variations of serum sodium concentration may be associated with mortality. Our objective was to confirm the impact of borderline dysnatremia for patients admitted to hospital on in-hospital mortality using real life care data from our electronic health record (EHR) and a phenome-wide association analysis (PheWAS). Methods Retrospective observational study based on patient data admitted to Hôpital Européen George Pompidou, between 01/01/2008 and 31/06/2014; including 45,834 patients with serum sodium determinations on admission. We analyzed the association between dysnatremia and in-hospital mortality, using a multivariate logistic regression model to adjust for classical potential confounders. We performed a PheWAS to identify new potential confounders. Results Hyponatremia and hypernatremia were recorded for 12.0% and 1.0% of hospital stays, respectively. Adjusted odds ratios (ORa) for severe, moderate and borderline hyponatremia were 3.44 (95% CI, 2.41–4.86), 2.48 (95% CI, 1.96–3.13) and 1.98 (95% CI, 1.73–2.28), respectively. ORa for severe, moderate and borderline hypernatremia were 4.07 (95% CI, 2.92–5.62), 4.42 (95% CI, 2.04–9.20) and 3.72 (95% CI, 1.53–8.45), respectively. Borderline hyponatremia (ORa = 1.57 95% CI, 1.35–1.81) and borderline hypernatremia (ORa = 3.47 95% CI, 2.43–4.90) were still associated with in-hospital mortality after adjustment for classical and new confounding factors identified through the PheWAS analysis. Conclusion Borderline dysnatremia on admission are independently associated with a higher risk of in-hospital mortality. By using medical data automatically collected in EHR and a new data mining approach, we identified new potential confounding factors that were highly associated with both mortality and dysnatremia
A sub-1-V, high precision, ultra low-power, process trimmable, resistorless voltage reference with low cost 90-nm standard CMOS technology
International audienc
Time of Bariatric Surgery and Hospitalization for SARS-CoV-2: a Nationwide Study
International audienc
Additional file 2: of Association between borderline dysnatremia and mortality insight into a new data mining approach
Unadjusted and Adjusted Risk of In-Hospital Mortality for Each Patients Subgroup According to Their Serum Sodium Concentration at Hospital Admission (DOCX 87Â kb
Leveraging the EHR4CR platform to support patient inclusion in academic studies: challenges and lessons learned
Abstract Background The development of Electronic Health Records (EHRs) in hospitals offers the ability to reuse data from patient care activities for clinical research. EHR4CR is a European public-private partnership aiming to develop a computerized platform that enables the re-use of data collected from EHRs over its network. However, the reproducibility of queries may depend on attributes of the local data. Our objective was 1/ to describe the different steps that were achieved in order to use the EHR4CR platform and 2/ to identify the specific issues that could impact the final performance of the platform. Methods We selected three institutional studies covering various medical domains. The studies included a total of 67 inclusion and exclusion criteria and ran in two University Hospitals. We described the steps required to use the EHR4CR platform for a feasibility study. We also defined metrics to assess each of the steps (including criteria complexity, normalization quality, and data completeness of EHRs). Results We identified 114 distinct medical concepts from a total of 67 eligibility criteria Among the 114 concepts: 23 (20.2%) corresponded to non-structured data (i.e. for which transformation is needed before analysis), 92 (81%) could be mapped to terminologies used in EHR4CR, and 86 (75%) could be mapped to local terminologies. We identified 51 computable criteria following the normalization process. The normalization was considered by experts to be satisfactory or higher for 64.2% (43/67) of the computable criteria. All of the computable criteria could be expressed using the EHR4CR platform. Conclusions We identified a set of issues that could affect the future results of the platform: (a) the normalization of free-text criteria, (b) the translation into computer-friendly criteria and (c) issues related to the execution of the query to clinical data warehouses. We developed and evaluated metrics to better describe the platforms and their result. These metrics could be used for future reports of Clinical Trial Recruitment Support Systems assessment studies, and provide experts and readers with tools to insure the quality of constructed dataset
Additional file 1: of Association between borderline dysnatremia and mortality insight into a new data mining approach
SQL code extraction from the HEGP-CDW and R Code for the PheWAS analysis (DOCX 69Â kb
Additional file 3: of Association between borderline dysnatremia and mortality insight into a new data mining approach
Manhattan Plots Representing the âLog(p-value) of the Association Tests Between ICD-10 Billing Codes, Borderline Hyponatremia, Borderline Hypernatremia and Mortality (DOCX 85Â kb
Additional file 4: of Association between borderline dysnatremia and mortality insight into a new data mining approach
Association between Dysnatremia and In-Hospital mortality. Comparison of the different regression models (DOCX 27Â kb
Efficiency and effectiveness evaluation of an automated multi-country patient count cohort system
International audienceBackgroundWith the increase of clinical trial costs during the last decades, the design of feasibility studies has become an essential process to reduce avoidable and costly protocol amendments. This design includes timelines, targeted sites and budget, together with a list of eligibility criteria that potential participants need to match.The present work was designed to assess the value of obtaining potential study participant counts using an automated patient count cohort system for large multi-country and multi-site trials: the Electronic Health Records for Clinical Research (EHR4CR) system.MethodsThe evaluation focuses on the accuracy of the patient counts and the time invested to obtain these using the EHR4CR platform compared to the current questionnaire based process. This evaluation will assess the patient counts from ten clinical trials at two different sites. In order to assess the accuracy of the results, the numbers obtained following the two processes need to be compared to a baseline number, the “alloyed” gold standard, which was produced by a manual check of patient records.ResultsThe patient counts obtained using the EHR4CR system were in three evaluated trials more accurate than the ones obtained following the current process whereas in six other trials the current process counts were more accurate. In two of the trials both of the processes had counts within the gold standard’s confidence interval.In terms of efficiency the EHR4CR protocol feasibility system proved to save approximately seven calendar days in the process of obtaining patient counts compared to the current manual process.ConclusionsAt the current stage, electronic health record data sources need to be enhanced with better structured data so that these can be re-used for research purposes. With this kind of data, systems such as the EHR4CR are able to provide accurate objective patient counts in a more efficient way than the current methods.Additional research using both structured and unstructured data search technology is needed to assess the value of unstructured data and to compare the amount of efforts needed for data preparation
Detection of Drug–Drug Interactions Inducing Acute Kidney Injury by Electronic Health Records Mining
International audienceBackground and Objective : While risk of acute kidney injury (AKI) is a well documented adverse effect of some drugs, few studies have assessed the relationship between drug–drug interactions (DDIs) and AKI. Our objective was to develop an algorithm capable of detecting potential signals on this relationship by retrospectively mining data from electronic health records.Material and methods : Data were extracted from the clinical data warehouse (CDW) of the Hôpital Européen Georges Pompidou (HEGP). AKI was defined as the first level of the RIFLE criteria, that is, an increase ≥50 % of creatinine basis. Algorithm accuracy was tested on 20 single drugs, 10 nephrotoxic and 10 non-nephrotoxic. We then tested 45 pairs of non-nephrotoxic drugs, among the most prescribed at our hospital and representing distinct pharmacological classes for DDIs.Results : Sensitivity and specificity were 50 % [95 % confidence interval (CI) 23.66–76.34] and 90 % (95 % CI 59.58–98.21), respectively, for single drugs. Our algorithm confirmed a previously identified signal concerning clarithromycin and calcium-channel blockers (unadjusted odds ratio (ORu) 2.92; 95 % CI 1.11–7.69, p = 0.04). Among the 45 drug pairs investigated, we identified a signal concerning 55 patients in association with bromazepam and hydroxyzine (ORu 1.66; 95 % CI 1.23–2.23). This signal was not confirmed after a chart review. Even so, AKI and co-prescription were confirmed for 96 % (95 % CI 88–99) and 88 % (95 % CI 76–94) of these patients, respectively.Conclusion : Data mining techniques on CDW can foster the detection of adverse drug reactions when drugs are used alone or in combination