354 research outputs found

    Influence of Gd2O3 and Yb2O3 Co-doping on Phase Stability, Thermo-physical Properties and Sintering of 8YSZ

    Get PDF
    AbstractThe role of multicomponent rare earth oxides in phase stability, thermo-physical properties and sintering for ZrO2-based thermal barrier coatings (TBCs) materials is investigated. 8YSZ co-doped with 3 mol(Gd2O3 and 3 mol% Yb2O3 (GYb-YSZ) powders are synthesized by solid state reaction for 24 h at various temperatures. As temperature increases, stabilizers are dissolved into zirconia matrix gradually. Synthesized at 1 500 °C, GYb-YSZ is basically composed of cubic phase. GYb-YSZ exhibits excellent phase stability and sinters lower than 8YSZ by nearly three times. The thermal conductivity of GYb-YSZ is much lower than that of 8YSZ, and the thermal expansion coefficient of GYb-YSZ is comparable to that of 8YSZ. The influence of Gd2O3 and Yb2O3 co-doping on phase stability, thermal conductivity and sintering of 8YSZ is discussed

    CellMix: A General Instance Relationship based Method for Data Augmentation Towards Pathology Image Classification

    Full text link
    In pathology image analysis, obtaining and maintaining high-quality annotated samples is an extremely labor-intensive task. To overcome this challenge, mixing-based methods have emerged as effective alternatives to traditional preprocessing data augmentation techniques. Nonetheless, these methods fail to fully consider the unique features of pathology images, such as local specificity, global distribution, and inner/outer-sample instance relationships. To better comprehend these characteristics and create valuable pseudo samples, we propose the CellMix framework, which employs a novel distribution-oriented in-place shuffle approach. By dividing images into patches based on the granularity of pathology instances and shuffling them within the same batch, the absolute relationships between instances can be effectively preserved when generating new samples. Moreover, we develop a curriculum learning-inspired, loss-driven strategy to handle perturbations and distribution-related noise during training, enabling the model to adaptively fit the augmented data. Our experiments in pathology image classification tasks demonstrate state-of-the-art (SOTA) performance on 7 distinct datasets. This innovative instance relationship-centered method has the potential to inform general data augmentation approaches for pathology image classification. The associated codes are available at https://github.com/sagizty/CellMix

    Loss of Fructose-1,6-Bisphosphatase Induces Glycolysis and Promotes Apoptosis Resistance of Cancer Stem-Like Cells: An Important Role in Hexavalent Chromium-Induced Carcinogenesis

    Get PDF
    Hexavalent chromium (Cr(VI)) compounds are confirmed human carcinogens for lung cancer. Our previous studies has demonstrated that chronic exposure of human bronchial epithelial BEAS-2B cells to low dose of Cr(VI) causes malignant cell transformation. The acquisition of cancer stem cell-like properties is involved in the initiation of cancers. The present study has observed that a small population of cancer stem-like cells (BEAS-2B-Cr-CSC) exists in the Cr(VI)-transformed cells (BEAS-2B-Cr). Those BEAS-2B-Cr-CSC exhibit extremely reduced capability of generating reactive oxygen species (ROS) and apoptosis resistance. BEAS-2B-Cr-CSC are metabolic inactive as evidenced by reductions in oxygen consumption, glucose uptake, ATP production, and lactate production. Most importantly, BEAS-2B-Cr-CSC are more tumorigenic with high levels of cell self-renewal genes, Notch1 and p21. Further study has found that fructose-1,6-bisphosphatase (FBP1), an rate-limiting enzyme driving glyconeogenesis, was lost in BEAS-2B-Cr-CSC. Forced expression of FBP1 in BEAS-2B-Cr-CSC restored ROS generation, resulting in increased apoptosis, leading to inhibition of tumorigenesis. In summary, the present study suggests that loss of FBP1 is a critical event in tumorigenesis of Cr(VI)-transformed cells

    CPIA Dataset: A Comprehensive Pathological Image Analysis Dataset for Self-supervised Learning Pre-training

    Full text link
    Pathological image analysis is a crucial field in computer-aided diagnosis, where deep learning is widely applied. Transfer learning using pre-trained models initialized on natural images has effectively improved the downstream pathological performance. However, the lack of sophisticated domain-specific pathological initialization hinders their potential. Self-supervised learning (SSL) enables pre-training without sample-level labels, which has great potential to overcome the challenge of expensive annotations. Thus, studies focusing on pathological SSL pre-training call for a comprehensive and standardized dataset, similar to the ImageNet in computer vision. This paper presents the comprehensive pathological image analysis (CPIA) dataset, a large-scale SSL pre-training dataset combining 103 open-source datasets with extensive standardization. The CPIA dataset contains 21,427,877 standardized images, covering over 48 organs/tissues and about 100 kinds of diseases, which includes two main data types: whole slide images (WSIs) and characteristic regions of interest (ROIs). A four-scale WSI standardization process is proposed based on the uniform resolution in microns per pixel (MPP), while the ROIs are divided into three scales artificially. This multi-scale dataset is built with the diagnosis habits under the supervision of experienced senior pathologists. The CPIA dataset facilitates a comprehensive pathological understanding and enables pattern discovery explorations. Additionally, to launch the CPIA dataset, several state-of-the-art (SOTA) baselines of SSL pre-training and downstream evaluation are specially conducted. The CPIA dataset along with baselines is available at https://github.com/zhanglab2021/CPIA_Dataset

    Managing occluded stents in biliary obstruction using radiofrequency ablation combined with 125I-strand brachytherapy

    Get PDF
    PURPOSEWe aimed to assess the effectiveness of percutaneous radiofrequency ablation (PRFA) combined with iodine-125 (125I) seed strand brachytherapy (125I-BT) for treatment of occluded biliary stents.METHODSFrom November 2015 to September 2017, 13 consecutive patients with occluded biliary metal stents, implanted for malignant obstruction, underwent PRFA combined with 125I-BT to reopen the bile duct. Data included clinical and technical success, stent patency, complications, and overall survival.RESULTSThe clinical and technical success rates were both 100%. One month after treatment, the total serum bilirubin level had decreased significantly (P < 0.001). Early complications of cholangitis or hemobilia were experienced by one patient each. Three patients (23.1%) had late complications, including two cases of cholangitis and one case of cholecystitis. During the mean follow-up of 233±82.9 days (range, 88–365 days), the stent patency time was 239±26.5 days (95% CI, 187–291 days), and the 6-month stent patency rate was 68.4%. Five patents died; the mean survival time was 298±30.1 days (95% CI, 239–358 days). The 6-month survival rate was 83%.CONCLUSIONPRFA therapy combined with 125I-BT is feasible and safe for patients with occluded metal stents placed for malignant biliary obstruction. Nevertheless, randomized controlled trails are needed to confirm the effectiveness of this new approach

    Effects of temporal and spatial scales on soil yeast communities in the peach orchard

    Get PDF
    Shihezi Reclamation Area is located at the southern edge of the Junggar Basin, with natural, soil, and climatic conditions unique to the production of peaches. In turn, peach orchards have accumulated rich microbial resources. As an important taxon of soil fungi, the diversity and community structure changes of yeast in the soil of peach orchards on spatial and temporal scales are still unknown. Here, we aimed to investigate the changes in yeast diversity and community structure in non-rhizosphere and rhizosphere soils of peach trees of different ages in the peach orchard and the factors affecting them, as well as the changes in the yeast co-occurrence network in the peach orchard at spatial and temporal scales. High-through put sequencing results showed that a total of 114 yeast genera were detected in all soil samples, belonging to Ascomycota (60 genera) and Basidiomycota (54 genera). The most dominant genus, Cryptococcus, was present in greater than 10% abundance in each sample. Overall, the differences in yeast diversity between non-rhizosphere and rhizosphere soil of peach trees at 3, 8 and 15 years were not significant. Principal coordinate analysis (PCoA) showed that differences in yeast community structure were more pronounced at the temporal scale compared to the spatial scale. The results of soil physical and chemical analysis showed that the 15-year-old peach rhizosphere soil had the lowest pH, while the OM, TN, and TP contents increased significantly. Redundancy analysis showed that soil pH and CO were key factors contributing to changes in soil yeast community structure in the peach orchard at both spatial and temporal scales. The results of co-occurrence network analysis showed that the peach orchard soil yeast network showed synergistic effects as a whole, and the degree of interactions and connection tightness of the 15-year-old peach orchard soil yeast network were significantly higher than the 3- and 8-year-old ones on the time scale. The results reveal the distribution pattern and mechanism of action of yeast communities in peach orchard soils, which can help to develop effective soil management strategies and improve the stability of soil microecology, thus promoting crop growth

    Traditional Chinese medicine improves myasthenia gravis by regulating the symbiotic homeostasis of the intestinal microbiota and host

    Get PDF
    Myasthenia gravis (MG) is an autoimmune disease caused by autoantibodies that is dependent on T-cell immunity and complement participation and mainly involves neuromuscular junctions. In this study, 30 patients with myasthenia gravis were selected and divided into pretreatment (Case group) and posttreatment (Treatment group) and 30 healthy volunteers (CON group) were included. Among them, the treatment group was treated with Modified Buzhong Yiqi Decoction (MBZYQD), and the levels of antibodies such as AChR, Musk and Titin in blood and intestinal microbiota were compared before treatment (Case group), after treatment (Treatment group) and in healthy volunteers (CON group). The results showed that after treatment with MBZYQD, the antibody levels of AChR, MuSK, and Titin and the inflammatory factor level of IL-6, IL-1β, and IL-22 in MG patients decreased significantly and nearly returned to a healthy level. In addition, after treatment with MBZYQD, the diversity, structure and function of intestinal microorganisms in MG patients also recovered to a healthy level. At the phylum level, the relative abundance of Proteobacteria in the Case group increased significantly, accompanied by a significant decrease in the relative abundance of Bacteroides compared with that in the CON group, the relative abundance of Proteobacteria and Bacteroides in the Treatment group was similar to that in the CON group. At the genus level, the relative abundance of Shigella in the Case group was significantly increased, accompanied by a significant decrease in the relative abundance of Prevotella, and the relative abundance of Shigella and Prevotella in Treatment group was similar to that in the CON group. Moreover, the fluorobenzoate degradation pathway (KO00364) was significantly increased in the Case group, while this pathway was significantly decreased in the Treatment group. In conclusion, MBZYQD can improve the immune function of the host by regulating the diversity, structure and function of the intestinal microbiota to treat myasthenia gravis

    FSCN1 Promotes Epithelial-Mesenchymal Transition Through Increasing Snail1 in Ovarian Cancer Cells

    Get PDF
    Background/Aims: Epithelial-mesenchymal transition (EMT) is one of the key mechanisms mediating cancer progression. Snail1 has a pivotal role in the regulation of EMT, involving the loss of E-cadherin and concomitant upregulation of vimentin, among other biomarkers. We have found FSCN1 promoted EMT in ovarian cancer cells, but the precise mechanism of FSCN1 in EMT process has not been clearly elucidated. Methods: The levels of FSCN1 and snail1 were determined in epithelial ovarian cancer(EOC) specimen and in ovarian cancer cells by RT-qPCR. The changes of EMT makers and effects on snail1 by FSCN1 were examined by overexpression or depletion of FSCN1 in EOC cells by RT-qPCR and western blotting. The invasiveness of the FSCN1-modified EOC cells was examined in transwell assay. Co-immunoprecipitation (IP) was performed to detect the interaction between snail1 and FSCN1 in EOC cells. Results: We found FSCN1 and snail1 significantly increased in EOC, and especially in EOC with metastasis. FSCN1 was positively correlated with snail1 expression at the cellular/histological levels. Moreover, we further showed that FSCN1 physiologically interacted with and increased the levels of snail1 to promote ovarian cancer cell EMT. Conclusion: FSCN1 promote EMT through snail1 in ovarian cancer cells. FSCN1 is an attractive novel target for inhibiting invasion and metastasis of EOC cells
    • …
    corecore