23 research outputs found

    Clinical Application of Exosome Components

    Get PDF
    Exosomes belong to a subpopulation of EVs that carry different functional molecular cargoes, including proteins, nucleic acids, metabolites, and lipids. Notably, evidence has demonstrated that exosomes participate in bidirectional cell–cell communication and act as critical molecular vehicles in regulating numerous physiological and pathological processes. Since the specific contents within exosomes carry the information from their cells of origin, this property permits exosomes to act as valuable biomarkers. This chapter summarizes the potential use of exosome components in diagnosing, prognosis, or monitoring and treating multiple cancers and other non-neoplastic diseases. We also discuss the deficiency of basic applications, including the limitations of research methods and different research institutions and the differences generated by specimen sources. Thus, a better understanding of the problem of exosome detection may pave the way to promising exosome-based clinical applications

    Impact of cytotoxic T lymphocytes immunotherapy on prognosis of colorectal cancer patients

    Get PDF
    BackgroundExpansion and activation of cytotoxic T lymphocytes (CTLs) in vitro represents a promising immunotherapeutic strategy, and CTLs can be primed by dendritic cells (DCs) loaded with tumor-associated antigens (TAAs) transformed by recombinant adeno-associated virus (rAAV). This study aimed to explore the impact of rAAV-DC-induced CTLs on prognosis of CRC and to explore factors associated with prognosis.MethodsThis prospective observational study included patients operated for CRC at Yan’an Hospital Affiliated to Kunming Medical University between 2016 and 2019. The primary outcome was progression-free survival (PFS), secondary outcomes were overall survival (OS) and adverse events. Totally 49 cases were included, with 29 and 20 administered rAAV-DC-induced CTL and chemotherapy, respectively.ResultsAfter 37-69 months of follow-up (median, 54 months), OS (P=0.0596) and PFS (P=0.0788) were comparable between two groups. Mild fever occurred in 2 (6.9%) patients administered CTL infusion. All the chemotherapy group experienced mild-to-moderate adverse effects, including vasculitis (n=20, 100%), vomiting (n=5, 25%), nausea (n=17, 85%) and fatigue (n=17, 85%).ConclusionsLymphatic metastasis (hazard ratio [HR]=4.498, 95% confidence interval [CI]: 1.290-15.676; P=0.018) and lower HLA-I expression (HR=0.294, 95%CI: 0.089-0.965; P=0.044) were associated with poor OS in the CTL group. CTLs induced by rAAV-DCs might achieve comparable effectiveness in CRC patients compare to chemotherapy, cases with high tumor-associated HLA-I expression and no lymphatic metastasis were more likely to benefit from CTLs

    Electrolytic Partial Fluorination of Organic Compounds. 32. 1

    No full text

    Transient Simulation Analysis of Needle Roller Bearing in Oil Jet Lubrication and Planetary Gearbox Lubrication Conditions Based on Computational Fluid Dynamics

    No full text
    The transient lubrication conditions of rolling bearings are different in gearboxes and bearing testers. It has been observed that samples of qualified rolling bearings tested in rolling bearing testers often fail and do not meet lifespan requirements when employed in other lubrication conditions. This may be caused by different factors affecting the bearing in testing and applying lubrication. Needle roller bearings were selected for this study to investigate the causes of this phenomenon in terms of lubrication. Based on the computational fluid dynamics (CFD) method, fluid domain models for the same type of rolling bearings with different lubrication conditions were established. The transient flow fields of rolling bearings with oil jet lubrication in a tester and splash lubrication in a planetary gearbox were simulated. The air–oil transient distribution of rolling bearings in two kinds of lubrication was analyzed. The results indicate that the rotational speed significantly affected the oil jet lubrication of the needle roller bearing. The average oil volume fraction rose by 0.2 with the increase in the bearing speed from 1200 r/min to 6000 r/min and by 0.06 with the increase in the oil jet velocity from 8 m/s to 16 m/s. The splash lubrication of the bearings in the planetary gearbox was directly related to the immersion depth of the rolling bearings in the initial position. Meanwhile, the splash lubrication of the bearings was also affected by other factors, including the initial layout of the planetary gears. The increase in speed from 1200 r/min to 6000 r/min made the average oil volume fraction of splash lubrication decrease by 4.4%. The average oil volume fraction of the bearings with splash lubrication was better than that with oil jet lubrication by an average of 41.9% when the bearing speed was in the low-speed stage, ranging from 1200 r/min to 3600 r/min. On the contrary, the bearings with oil jet lubrication were better than those with splash lubrication by an average of 31.8% when the bearing speed was in the high-speed stage, ranging from 4800 r/min to 6000 r/min

    One-Class LSTM Network for Anomalous Network Traffic Detection

    No full text
    Artificial intelligence-assisted security is an important field of research in relation to information security. One of the most important tasks is to distinguish between normal and abnormal network traffic (such as malicious or sudden traffic). Traffic data are usually extremely unbalanced, and this seriously hinders the detection of outliers. Therefore, the identification of outliers in unbalanced datasets has become a key issue. To help solve this challenge, there is increasing interest in focusing on one-class classification methods that train models based on the samples of a single given class. In this paper, long short-term memory (LSTM) is introduced into one-class classification, and one-class LSTM (OC-LSTM) is proposed based on the traditional one-class support vector machine (OC-SVM). In contrast with other hybrid deep learning methods based on auto-encoders, the proposed method is an end-to-end training network that uses a loss function such as the OC-SVM optimization objective for model training. A comprehensive experiment on three large complex network traffic datasets showed that this method is superior to the traditional shallow method and the most advanced deep method. Furthermore, the proposed method can provide an effective reference for anomaly detection research in the field of network security, especially for the application of one-class classification

    Hierarchical network enabled flexible textile pressure sensor with ultrabroad response range and high-temperature resistance

    No full text
    Thin, lightweight, and flexible textile pressure sensors with the ability to detect the full range of faint pressure (<100 Pa), low pressure (≈KPa) and high pressure (≈MPa) are in significant demand to meet the requirements for applications in daily activities and more meaningfully in some harsh environments, such as high temperature and high pressure. However, it is still a significant challenge to fulfill these requirements simultaneously in a single pressure sensor. Herein, a high-performance pressure sensor enabled by polyimide fiber fabric with functionalized carbon-nanotube (PI/FCNT) is obtained via a facile electrophoretic deposition (EPD) approach. High-density FCNT is evenly wrapped and chemically bonded to the fiber surface during the EPD process, forming a conductive hierarchical fiber/FCNT matrix. Benefiting from the large compressible region of PI fiber fabric, abundant yet firm contacting points and high elastic modulus of both PI and CNT, the proposed pressure sensor can be customized and modulated to achieve both an ultra-broad sensing range, long-term stability and high-temperature resistance. Thanks to these merits, the proposed pressure sensor could monitor the human physiological information, detect tiny and extremely high pressure, can be integrated into an intelligent mechanical hand to detect the contact force under high-temperature.Ministry of Education (MOE)Nanyang Technological UniversityNational Research Foundation (NRF)Published versionThis work was partially supported by the Shenzhen Basic Research Grant: GJHZ20200731095601004, JCYJ20200109114801744,JCYJ20180507182431967, JCYJ20180507182445460, the National Nature Science Foundation of China (11804354, 61774164, 51903249). This work was supported in part by the Singapore Ministry of Education Academic Research Fund Tier 2 (MOE2019-T2-2-127), the Singapore Ministry of Education Academic Research Fund Tier 1 (MOE2019-T1-001-103 and MOE2019-T1-001-111) and the Singapore National Research Foundation Competitive Research Program (NRF-CRP18-2017-02). This work was also supported in part by Nanyang Technological University
    corecore