67 research outputs found

    Apolipoprotein E genotype and neurological disease onset in Niemann–Pick disease, type C1

    Full text link
    Niemann–Pick disease, type C1 (NPC1) is a lipid storage disorder that results in progressive neurological impairment. The NPC1 phenotype is extremely variable and at the individual level is likely influenced by other genetic traits. In addition to residual function of NPC1 protein, we hypothesize that modifier genes, as frequently observed with other autosomal recessive diseases, influence the NPC phenotype. The NPC1 phenotype includes progressive dementia, and the NPC pathology has some overlap with the pathology of Alzheimer disease (AD). Thus, we examined apolipoprotein E (ApoE) and microtubule‐associated protein tau (MAPT) polymorphisms in a cohort of 15 NPC1 patients with well characterized longitudinal disease progression. Although we did not find any correlations between disease severity and tau polymorphisms, we found significant associations between ApoE polymorphisms and phenotypic severity. Specifically, ApoE4 and ApoE2 alleles were associated, respectively, with increased and decreased disease severity in this cohort of NPC1 patients. These data support the hypothesis that ApoE may play a role in modulating NPC1 neuropathology. © 2012 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94247/1/35395_ftp.pd

    Human and mouse neuroinflammation markers in Niemann‐Pick disease, type C1

    Full text link
    Niemann‐Pick disease, type C1 (NPC1) is an autosomal recessive lipid storage disorder in which a pathological cascade, including neuroinflammation occurs. While data demonstrating neuroinflammation is prevalent in mouse models, data from NPC1 patients is lacking. The current study focuses on identifying potential markers of neuroinflammation in NPC1 from both the Npc1 mouse model and NPC1 patients. We identified in the mouse model significant changes in expression of genes associated with inflammation and compared these results to the pattern of expression in human cortex and cerebellar tissue. From gene expression array analysis, complement 3 (C3) was increased in mouse and human post‐mortem NPC1 brain tissues. We also characterized protein levels of inflammatory markers in cerebrospinal fluid (CSF) from NPC1 patients and controls. We found increased levels of interleukin 3, chemokine (C‐X‐C motif) ligand 5, interleukin 16 and chemokine ligand 3 (CCL3), and decreased levels of interleukin 4, 10, 13 and 12p40 in CSF from NPC1 patients. CSF markers were evaluated with respect to phenotypic severity. Miglustat treatment in NPC1 patients slightly decreased IL‐3, IL‐10 and IL‐13 CSF levels; however, further studies are needed to establish a strong effect of miglustat on inflammation markers. The identification of inflammatory markers with altered levels in the cerebrospinal fluid of NPC1 patients may provide a means to follow secondary events in NPC1 disease during therapeutic trials.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147148/1/jimd0083.pd

    Defining Natural History: Assessment of the Ability of College Students to Aid in Characterizing Clinical Progression of Niemann-Pick Disease, Type C

    Get PDF
    Niemann-Pick Disease, type C (NPC) is a fatal, neurodegenerative, lysosomal storage disorder. It is a rare disease with broad phenotypic spectrum and variable age of onset. These issues make it difficult to develop a universally accepted clinical outcome measure to assess urgently needed therapies. To this end, clinical investigators have defined emerging, disease severity scales. The average time from initial symptom to diagnosis is approximately 4 years. Further, some patients may not travel to specialized clinical centers even after diagnosis. We were therefore interested in investigating whether appropriately trained, community-based assessment of patient records could assist in defining disease progression using clinical severity scores. In this study we evolved a secure, step wise process to show that pre-existing medical records may be correctly assessed by non-clinical practitioners trained to quantify disease progression. Sixty-four undergraduate students at the University of Notre Dame were expertly trained in clinical disease assessment and recognition of major and minor symptoms of NPC. Seven clinical records, randomly selected from a total of thirty seven used to establish a leading clinical severity scale, were correctly assessed to show expected characteristics of linear disease progression. Student assessment of two new records donated by NPC families to our study also revealed linear progression of disease, but both showed accelerated disease progression, relative to the current severity scale, especially at the later stages. Together, these data suggest that college students may be trained in assessment of patient records, and thus provide insight into the natural history of a disease

    Relative acidic compartment volume as a lysosomal storage disorder–associated biomarker

    Get PDF
    Lysosomal storage disorders (LSDs) occur at a frequency of 1 in every 5,000 live births and are a common cause of pediatric neurodegenerative disease. The relatively small number of patients with LSDs and lack of validated biomarkers are substantial challenges for clinical trial design. Here, we evaluated the use of a commercially available fluorescent probe, Lysotracker, that can be used to measure the relative acidic compartment volume of circulating B cells as a potentially universal biomarker for LSDs. We validated this metric in a mouse model of the LSD Niemann-Pick type C1 disease (NPC1) and in a prospective 5-year international study of NPC patients. Pediatric NPC subjects had elevated acidic compartment volume that correlated with age-adjusted clinical severity and was reduced in response to therapy with miglustat, a European Medicines Agency–approved drug that has been shown to reduce NPC1-associated neuropathology. Measurement of relative acidic compartment volume was also useful for monitoring therapeutic responses of an NPC2 patient after bone marrow transplantation. Furthermore, this metric identified a potential adverse event in NPC1 patients receiving i.v. cyclodextrin therapy. Our data indicate that relative acidic compartment volume may be a useful biomarker to aid diagnosis, clinical monitoring, and evaluation of therapeutic responses in patients with lysosomal disorders

    Niemann-Pick disease type C

    Get PDF
    Niemann-Pick C disease (NP-C) is a neurovisceral atypical lysosomal lipid storage disorder with an estimated minimal incidence of 1/120 000 live births. The broad clinical spectrum ranges from a neonatal rapidly fatal disorder to an adult-onset chronic neurodegenerative disease. The neurological involvement defines the disease severity in most patients but is typically preceded by systemic signs (cholestatic jaundice in the neonatal period or isolated spleno- or hepatosplenomegaly in infancy or childhood). The first neurological symptoms vary with age of onset: delay in developmental motor milestones (early infantile period), gait problems, falls, clumsiness, cataplexy, school problems (late infantile and juvenile period), and ataxia not unfrequently following initial psychiatric disturbances (adult form). The most characteristic sign is vertical supranuclear gaze palsy. The neurological disorder consists mainly of cerebellar ataxia, dysarthria, dysphagia, and progressive dementia. Cataplexy, seizures and dystonia are other common features. NP-C is transmitted in an autosomal recessive manner and is caused by mutations of either the NPC1 (95% of families) or the NPC2 genes. The exact functions of the NPC1 and NPC2 proteins are still unclear. NP-C is currently described as a cellular cholesterol trafficking defect but in the brain, the prominently stored lipids are gangliosides. Clinical examination should include comprehensive neurological and ophthalmological evaluations. The primary laboratory diagnosis requires living skin fibroblasts to demonstrate accumulation of unesterified cholesterol in perinuclear vesicles (lysosomes) after staining with filipin. Pronounced abnormalities are observed in about 80% of the cases, mild to moderate alterations in the remainder ("variant" biochemical phenotype). Genotyping of patients is useful to confirm the diagnosis in the latter patients and essential for future prenatal diagnosis. The differential diagnosis may include other lipidoses; idiopathic neonatal hepatitis and other causes of cholestatic icterus should be considered in neonates, and conditions with cerebellar ataxia, dystonia, cataplexy and supranuclear gaze palsy in older children and adults. Symptomatic management of patients is crucial. A first product, miglustat, has been granted marketing authorization in Europe and several other countries for specific treatment of the neurological manifestations. The prognosis largely correlates with the age at onset of the neurological manifestations

    γ-Secretase-dependent amyloid-β is increased in Niemann-Pick type C: A cross-sectional study

    No full text
    Objective: Niemann-Pick disease type C (NPC) is an inherited disorder characterized by intracellular accumulation of lipids such as cholesterol and glycosphingolipids in endosomes and lysosomes. This accumulation induces progressive degeneration of the nervous system. NPC shows some intriguing similarities with Alzheimer disease (AD), including neurofibrillary tangles, but patients with NPC generally lack amyloid-β (Aβ) plaques. Lipids affect γ-secretase-dependent amyloid precursor protein (APP) metabolism that generates Aβ in vitro, but this has been difficult to prove in vivo. Our aim was to assess the effect of altered lipid constituents in neuronal membranes on amyloidogenic APP processing in humans. Methods: We examined Aβ in CSF from patients with NPC (n = 38) and controls (n = 14). CSF was analyzed for Aβ38, Aβ40, Aβ42, α-cleaved soluble APP, β-cleaved soluble APP, total-tau, and phospho-tau. Results: Aβ release was markedly increased in NPC, with a shift toward the Aβ42 isoform. Levels of α- and β-cleaved soluble APP were similar in patients and controls. Patients with NPC had increased total-tau. Patients on treatment with miglustat (n = 18), a glucosylceramide synthase blocker, had lower Aβ42 and total-tau than untreated patients. Conclusion: Increased CSF levels of Aβ38, Aβ40, and Aβ42 and unaltered levels of β-cleaved soluble APP are consistent with increased γ-secretase-dependent Aβ release in the brains of patients with NPC. These results provide the first in vivo evidence that neuronal lipid accumulation facilitates γ-secretase- dependent Aβ production in humans and may be of relevance to AD pathogenesis. Copyright © 2011 by AAN Enterprises, Inc
    corecore