99 research outputs found

    Assessing the Impacts of the 2009/2010 Drought on Vegetation Indices, Normalized Difference Water Index, and Land Surface Temperature in Southwestern China

    Get PDF
    Droughts are projected to increase in severity and frequency on both regional and global scales. Despite the increasing occurrence and intensity of the 2009/2010 drought in southwestern China, the impacts of drought on vegetation in this region remain unclear. We examined the impacts of the 2009/2010 drought in southwestern China on vegetation by calculating the standardized anomalies of Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Normalized Difference Water Index (NDWI), and Land Surface Temperature (LST). The standardized anomalies of NDVI, EVI, and NDWI exhibited positively skewed frequency distributions, while the standardized anomalies of LST exhibited a negatively skewed frequency distribution. These results implied that the NDVI, EVI, and NDWI declined, while LST increased in the 2009/2010 drought-stricken vegetated areas during the drought period. The responses of vegetation to the 2009/2010 drought differed substantially among biomes. Savannas, croplands, and mixed forests were more vulnerable to the 2009/2010 drought than deciduous forest and grasslands, while evergreen forest was resistant to the 2009/2010 drought in southwestern China. We concluded that the 2009/2010 drought had negative impacts on vegetation in southwestern China. The resulting assessment on the impacts of drought assists in evaluating and mitigating its adverse effects in southwestern China

    A real-world study of anlotinib as third-line or above therapy in patients with her-2 negative metastatic breast cancer

    Get PDF
    BackgroundAntiangiogenic agents provides an optional treatment strategy for patients with metastatic breast cancer. The present study was conducted to evaluate the efficacy and safety of anlotinib as third-line or above therapy for patients with HER-2 negative metastatic breast cancer.MethodsPatients with HER-2 negative metastatic breast cancer who have failed from prior therapy and treated with anlotinib monotherapy or combined with chemotherapy or immunotherapy from June 2018 to December 2020 were retrospectively analyzed based on real-world clinical practice. The primary end point was progression free survival (PFS). Secondary end points included objective response rate (ORR), disease control rate (DCR), overall survival (OS) and safety.Results47 patients with HER-2 negative metastatic breast cancer received anlotinib monotherapy or combination therapy as third-line or above therapy. In the general population, 10 patients achieved PR, 25 patients had SD and 12 patients had PD. The overall ORR and DCR were 21.3% and 74.5%, respectively. Subgroup analysis suggested that there were no statistically significant differences in ORR and DCR with respect to HR status (positive vs. negative), treatment programs (monotherapy vs. combination) and treatment type in combination group (chemotherapy vs. immunotherapy). The patients who did not received previously anti-angiogenesis therapy had superior DCR (84.8% vs. 50.0%, P=0.012). Median PFS and OS were 5.0 months (95% CI=4.3-5.7) and 21.0 (95% CI=14.9-27.1) months, respectively. The PFS (6.5m vs. 3.5m, P=0.042)and OS (28.2m vs. 12.6m, P=0.040) were better in HR positive patients than HR negative patients. And simultaneously, patients who received anlotinib combination therapy obtained better PFS (5.5m vs. 3.0m, P=0.045). The incidence of Grade 3-4 adverse events(AEs) was 31.9%.ConclusionsAnlotinib monotherapy or combination therapy provide a viable third-line or above therapeutic strategy in patients with HER-2 negative metastatic breast cancer, a median PFS of 5.0 months was obtained with well tolerated toxicity

    The effects of object size on spatial orientation: an eye movement study

    Get PDF
    IntroductionThe processing of visual information in the human brain is divided into two streams, namely, the dorsal and ventral streams, object identification is related to the ventral stream and motion processing is related to the dorsal stream. Object identification is interconnected with motion processing, object size was found to affect the information processing of motion characteristics in uniform linear motion. However, whether the object size affects the spatial orientation is still unknown.MethodsThirty-eight college students were recruited to participate in an experiment based on the spatial visualization dynamic test. Eyelink 1,000 Plus was used to collect eye movement data. The final direction difference (the difference between the final moving direction of the target and the final direction of the moving target pointing to the destination point), rotation angle (the rotation angle of the knob from the start of the target movement to the moment of key pressing) and eye movement indices under conditions of different object sizes and motion velocities were compared.ResultsThe final direction difference and rotation angle under the condition of a 2.29°-diameter moving target and a 0.76°-diameter destination point were significantly smaller than those under the other conditions (a 0.76°-diameter moving target and a 0.76°-diameter destination point; a 0.76°-diameter moving target and a 2.29°-diameter destination point). The average pupil size under the condition of a 2.29°-diameter moving target and a 0.76°-diameter destination point was significantly larger than the average pupil size under other conditions (a 0.76°-diameter moving target and a 0.76°-diameter destination point; a 0.76°-diameter moving target and a 2.29°-diameter destination point).DiscussionA relatively large moving target can resist the landmark attraction effect in spatial orientation, and the influence of object size on spatial orientation may originate from differences in cognitive resource consumption. The present study enriches the interaction theory of the processing of object characteristics and motion characteristics and provides new ideas for the application of eye movement technology in the examination of spatial orientation ability

    Disentangling the effects of vapor pressure deficit on northern terrestrial vegetation productivity

    Get PDF
    The impact of atmospheric vapor pressure deficit (VPD) on plant photosynthesis has long been acknowledged, but large interactions with air temperature (T) and soil moisture (SM) still hinder a complete understanding of the influence of VPD on vegetation production across various climate zones. Here, we found a diverging response of productivity to VPD in the Northern Hemisphere by excluding interactive effects of VPD with T and SM. The interactions between VPD and T/SM not only offset the potential positive impact of warming on vegetation productivity but also amplifies the negative effect of soil drying. Notably, for high-latitude ecosystems, there occurs a pronounced shift in vegetation productivity\u27s response to VPD during the growing season when VPD surpasses a threshold of 3.5 to 4.0 hectopascals. These results yield previously unknown insights into the role of VPD in terrestrial ecosystems and enhance our comprehension of the terrestrial carbon cycle\u27s response to global warming

    Juvenile hormone counteracts the bHLH-PAS transcription factors MET and GCE to prevent caspase-dependent programmed cell death in Drosophila

    Get PDF
    Juvenile hormone (JH) regulates many developmental and physiological events in insects, but its molecular mechanism remains conjectural. Here we report that genetic ablation of the corpus allatum cells of th

    Study and Application of Safety Risk Evaluation Model for CO 2

    Full text link
    Analyzing showed that the safety risk evaluation for CO2 geological storage had important significance. Aimed at the characteristics of CO2 geological storage safety risk evaluation, drawing on previous research results, rank and order models for safety risk evaluation of CO2 geological storage were put forward based on information entropy and uncertainty measure theory. In this model, the uncertainty problems in safety risk evaluation of CO2 geological storage were solved by qualitative analysis and quantitative analysis, respectively; uncertainty measurement functions for the relevant factors were established based on experimental data; information entropy theory was applied to calculate the index weight of factors; safety risk level was judged based on credible degree recognition criterion and ordered. This model was applied in three typical zones of Erdos and Hetao basins. The results show that uncertainty measure method is objective and reasonable and can be used as a new way to evaluate the safety of CO2 geological storage sites in the future

    Hydrometeorological Forecast of a Typical Watershed in an Arid Area Using Ensemble Kalman Filter

    Full text link
    The stationarity test and systematic prediction of hydrometeorological parameters are becoming increasingly important in water resources management. Based on the Ensemble Kalman Filter (EnKF) and wavelet analysis, this study selects precipitation, evaporation, temperature, and runoff as model variables, builds a model, tests and analyzes the stationarity of the hydrometeorological parameters of the Manas River, and forecasts the selected parameters for two years. The results of the study show that during the 2000–2020 study period, precipitation in the Manas River Basin on the northern slope of the Tianshan Mountains shows a significant downward trend from 2016 to 2020, with an annual average decline rate of 23.30 mm/a over five years. The proportion of runoff during the flood season also increases, with the statistical probability of an extremely low value of runoff increasing by 37.62% on average. After using wavelet decomposition to provide input to EnKF, the NSE of the model for the prediction of precipitation, evaporation, temperature, and runoff reached 0.86, 0.89, 0.96, and 0.9 respectively. At the same time, the K-S value increases from 0.28 to 0.40, which means that the wavelet analysis technique has great potential as a preprocessing of the Ensemble Kalman filter

    Assessment of compensated advanced chronic liver disease based on serum bile acids in chronic hepatitis B patients

    Full text link
    Abstract Patients with chronic liver disease progressed to compensated advanced chronic liver disease (cACLD), the risk of liver-related decompensation increased significantly. This study aimed to develop prediction model based on individual bile acid (BA) profiles to identify cACLD. This study prospectively recruited 159 patients with hepatitis B virus (HBV) infection and 60 healthy volunteers undergoing liver stiffness measurement (LSM). With the value of LSM, patients were categorized as three groups: F1 [LSM ≤ 7.0 kilopascals (kPa)], F2 (7.1 < LSM ≤ 8.0 kPa), and cACLD group (LSM ≥ 8.1 kPa). Random forest (RF) and support vector machine (SVM) were applied to develop two classification models to distinguish patients with different degrees of fibrosis. The content of individual BA in the serum increased significantly with the degree of fibrosis, especially glycine-conjugated BA and taurine-conjugated BA. The Marco-Precise, Marco-Recall, and Marco-F1 score of the optimized RF model were all 0.82. For the optimized SVM model, corresponding score were 0.86, 0.84, and 0.85, respectively. RF and SVM models were applied to identify individual BA features that successfully distinguish patients with cACLD caused by HBV. This study provides a new tool for identifying cACLD that can enable clinicians to better manage patients with chronic liver disease

    Wind Power Consumption Model Based on the Connection between Mid- and Long-Term Monthly Bidding Power Decomposition and Short-Term Wind-Thermal Power Joint Dispatch

    Full text link
    Due to the insufficient consideration of medium and long-term wind power contract power in short-term dispatch, long-term planning and real-time consumption of wind power cannot be effectively undertaken, resulting in a large amount of abandoned wind power. A way to improve the wind power absorption capacity has become an urgent problem to be studied. According to the characteristics of the market and dispatching in the process of wind-fire integration construction, this paper constructs a wind power consumption model that connects the mid- and long-term transaction power decomposition and short-term dispatch. Considering the unit output characteristics and maintenance, the monthly contract electricity is decomposed into daily electricity, and the nesting of medium and long-term transactions and short-term scheduling is realized; the second stage is a short-term multi-objective optimal scheduling model considering the decomposition of contract electricity and the output of non-bidding units to improve the real-time consumption of wind power. Finally, a province in northwest China is taken as an example to verify the effectiveness of the proposed method

    Isotopic Characterization of River Waters and Water Source Identification in an Inland River, Central Asia

    Full text link
    Understanding runoff generation and dynamics is the basis for water resource management, while water isotopic ratios are a potential tool for studying the mechanism on a large scale. In this paper, spatial variations of δ18O and δD of river water and their sources within a large region of the Tarim River were investigated. The results showed obvious spatial variations of both water isotope values along the river flow direction, and significant seasonal variation occurred within the river water isotopes. This indicated that different proportions of rain and melt water entering river water should lead to spatial variation, and for mid-stream and downstream regions, the transformation relationship between surface water and groundwater should consider less input of melt water. Furthermore, we quantitatively determine the ratio of different water sources using the stable isotope mass balance method and other stable tracer elements. Results showed the contribution of ice-snowmelt water varied from 14.97% to 40.85%, that of rain varied from 9.04% to 54.80%, and that of groundwater varied from 15.34% to 58.85%, and they also showed that baseflow is a factor connecting melt water and groundwater, which meant the Hotan River and the Yarkand River are melt water–dependent rivers, and seasonal precipitation is the main water supply source of baseflow in the Aksu River and the Kaidu River
    • …
    corecore