5 research outputs found

    Genome editing reveals dmrt1 as an essential male sex-determining gene in Chinese tongue sole (Cynoglossus semilaevis)

    Get PDF
    Chinese tongue sole is a marine fish with ZW sex determination. Genome sequencing suggested that the Z-linked dmrt1 is a putative male determination gene, but direct genetic evidence is still lacking. Here we show that TALEN of dmrt1 efficiently induced mutations of this gene. The ZZ dmrt1 mutant fish developed ovary-like testis, and the spermatogenesis was disrupted. The female-related genes foxl2 and cyp19a1a were significantly increased in the gonad of the ZZ dmrt1 mutant. Conversely, the male-related genes Sox9a and Amh were significantly decreased. The dmrt1 deficient ZZ fish grew much faster than ZZ male control. Notably, we obtained an intersex ZW fish with a testis on one side and an ovary on the other side. This fish was chimeric for a dmrt1 mutation in the ovary, and wild-type dmrt1 in the testis. Our data provide the first functional evidence that dmrt1 is a male determining gene in tongue sole

    A Review on the Development of Two-Way Coupled Atmospheric-Hydrological Models

    No full text
    The past two decades have seen an intensive development in two-way coupled atmospheric and hydrological models, providing new opportunities to thoroughly understand hydrology–atmosphere coupling and improve hydrometeorological forecasting, which has not been possible before. This paper summarizes recent developments in hydrological presentation in land surface models (LSMs) and climate models, and the two-way coupling of atmospheric and hydrological models. The fully coupled models have been widely applied in identifying the impact of lateral surface and subsurface water transport in a land–atmosphere coupled system, and hydrometeorological simulations using techniques such as parameter calibration, data assimilation, and hydrology model structure revision have been used to improve the model accuracy. However, their applications still face major challenges, e.g., the complexity of hydrological parameter calibration, the lack of understanding of the physical mechanisms at high resolution, the parameterization of anthropogenic activities, and the limitations in simulation domain and period. Despite these difficulties, fully coupled atmospheric and hydrological models will gradually evolve into powerful tools to reproduce regional water cycles, offering significant potential for scientifically investigating water resources security issues affected by both climate change and human activities

    Mining and functional characterization of NADPH-cytochrome P450 reductases of the DNJ biosynthetic pathway in mulberry leaves

    No full text
    Abstract Background 1-Deoxynojirimycin (DNJ), the main active ingredient in mulberry leaves, with wide applications in the medicine and food industries due to its significant functions in lowering blood sugar, and lipids, and combating viral infections. Cytochrome P450 is a key enzyme for DNJ biosynthesis, its activity depends on the electron supply of NADPH-cytochrome P450 reductases (CPRs). However, the gene for MaCPRs in mulberry leaves remains unknown. Results In this study, we successfully cloned and functionally characterized two key genes, MaCPR1 and MaCPR2, based on the transcriptional profile of mulberry leaves. The MaCPR1 gene comprised 2064 bp, with its open reading frame (ORF) encoding 687 amino acids. The MaCPR2 gene comprised 2148 bp, and its ORF encoding 715 amino acids. The phylogenetic tree indicates that MaCPR1 and MaCPR2 belong to Class I and Class II, respectively. In vitro, we found that the recombinant enzymes MaCPR2 protein could reduce cytochrome c and ferricyanide using NADPH as an electron donor, while MaCPR1 did not. In yeast, heterologous co-expression indicates that MaCPR2 delivers electrons to MaC3'H hydroxylase, a key enzyme catalyzing the production of chlorogenic acid from 3-O-p-coumaroylquinic acid. Conclusions These findings highlight the orchestration of hydroxylation process mediated by MaCPR2 during the biosynthesis of secondary metabolite biosynthesis in mulberry leaves. These results provided a foundational understanding for fully elucidating the DNJ biosynthetic pathway within mulberry leaves

    2’-Fucosyllactose Inhibits Coxsackievirus Class A Type 9 Infection by Blocking Virus Attachment and Internalisation

    No full text
    Coxsackieviruses, a genus of enteroviruses in the small RNA virus family, cause fatal infectious diseases in humans. Thus far, there are no approved drugs to prevent these diseases. Human milk contains various biologically active components against pathogens. Currently, the potential activity of breast milk components against the coxsackievirus remains unclear. In our study, the inhibitory effect of 16 major human milk components was tested on coxsackievirus class A type 9 isolate (CV-A9), BUCT01; 2’-Fucosyllactose (2’-FL) was identified to be effective. Time-of-addition, attachment internalisation assays, and the addition of 2’-FL at different time points were applied to investigate its specific role in the viral life cycle. Molecular docking was used to predict 2’-FL’s specific cellular targets. The initial screening revealed a significant inhibitory effect (99.97%) against CV-A9 with 10 mg/mL 2’-FL, with no cytotoxicity observed. Compared with the control group, 2’-FL blocked virus entry (85%) as well as inhibited viral attachment (48.4%) and internalisation (51.3%), minimising its infection in rhabdomyosarcoma (RD) cells. The cell pre-incubation with 2’-FL exhibited significant inhibition (73.2–99.9%). Extended incubation between cells with 2’-FL reduced CV-A9 infection (93.9%), suggesting that 2’-FL predominantly targets cells to block infection. Molecular docking results revealed that 2’-FL interacted with the attachment receptor αvβ6 and the internalisation receptor FCGRT and β2M with an affinity of −2.14, −1.87, and −5.43 kcal/mol, respectively. This study lays the foundation for using 2’-FL as a food additive against CV-A9 infections

    Partitioning of available energy in canopy and soil surface in croplands with different irrigation methods

    No full text
    Available energy partitioning in the canopy and at the soil surface under the control of biophysical environment critically influences agricultural water resources management and the regional climate. Drip irrigation technology has been extensively promoted in arid regions and is gradually replacing conventional border irrigation technology, which alters the soil surface hydrothermal conditions and influences the available energy partitioning both in canopy and at the soil surface through biophysical processes. The water-saving effect of drip irrigation has been well studied previously, however, its biophysical controls of available energy partitioning in canopy and soil surface remain insufficiently understood. In this study, we made continuous comparative measurements in two maize fields with border irrigation and drip irrigation during the growing seasons in the period 2014–2018 by simultaneously using eddy covariance systems, sap flow gauges and micro-lysimeters. We found that drip irrigation increased transpiration by 10% and reduced soil evaporation by 40% during the partial canopy period, and these values decreased to 1% and 26%, respectively as the crop developed to complete canopy cover period. However, drip irrigation increased sensible heat fluxes both in canopy and soil surface by 93% and 46%, respectively during the partial canopy period, and by 10% and 231%, respectively during the complete canopy period. The soil moisture drives the discrepancy of available energy partitioning in both canopy and soil surface between two fields. Slow-release effect of the drip irrigation in replacing warm air in soil pores enhanced thermal convection in soil surface, small irrigation volume and small moisture area decreased evaporation loss, and frequent irrigation and sufficient soil moisture induced stable energy interaction between canopy and soil surface, therefore enhancing more sensible heat directed to canopy and soil surface in drip irrigated field. The results enhanced understanding of ecohydrology processes in agroecosystems and provided valuable information for agricultural water resource management
    corecore