49 research outputs found

    Effective noninvasive zygosity determination by maternal plasma target region sequencing

    Get PDF
    Background: Currently very few noninvasive molecular genetic approaches are available to determine zygosity for twin pregnancies in clinical laboratories. This study aimed to develop a novel method to determine zygosity by using maternal plasma target region sequencing. Methods: We constructed a statistic model to calculate the possibility of each zygosity type using likelihood ratios (Li) and empirical dynamic thresholds targeting at 4,524 single nucleotide polymorphisms (SNPs) loci on 22 autosomes. Then two dizygotic (DZ) twin pregnancies, two monozygotic (MZ) twin pregnancies and two singletons were recruited to evaluate the performance of our novel method. Finally we estimated the sensitivity and specificity of the model in silico under different cell-free fetal DNA (cff-DNA) concentration and sequence depth. Results/Conclusions: We obtained 8.90 Gbp sequencing data on average for six clinical samples. Two samples were classified as DZ with L values of 1.891 and 1.554, higher than the dynamic DZ cut-off values of 1.162 and 1.172, respectively. Another two samples were judged as MZ with 0.763 and 0.784 of L values, lower than the MZ cut-off values of 0.903 and 0.918. And the rest two singleton samples were regarded as MZ twins, with L values of 0.639 and 0.757, lower than the MZ cut-off values of 0.921 and 0.799. In silico, the estimated sensitivity of our noninvasive zygosity determination was 99.90% under 10% total cff-DNA concentration with 2 Gbp sequence data. As the cff-DNA concentration increased to 15%, the specificity was as high as 97% with 3.50 Gbp sequence data, much higher than 80% with 10% cff-DNA concentration. Significance: This study presents the feasibility to noninvasively determine zygosity of twin pregnancy using target region sequencing, and illustrates the sensitivity and specificity under various detecting condition. Our method can act as an alternative approach for zygosity determination of twin pregnancies in clinical practice.Multidisciplinary SciencesSCI(E)2ARTICLE6null

    Potential drug-drug interaction of olverembatinib (HQP1351) using physiologically based pharmacokinetic models

    Get PDF
    Olverembatinib (HQP1351) is a third-generation BCR-ABL tyrosine kinase inhibitor for the treatment of chronic myeloid leukemia (CML) (including T315I-mutant disease), exhibits drug-drug interaction (DDI) potential through cytochrome P450 (CYP) enzymes CYP3A4, CYP2C9, CYP2C19, CYP1A2, and CYP2B6. A physiologically-based pharmacokinetic (PBPK) model was constructed based on physicochemical and in vitro parameters, as well as clinical data to predict 1) potential DDIs between olverembatinib and CYP3A4 and CYP2C9 inhibitors or inducers 2), effects of olverembatinib on the exposure of CYP1A2, CYP2B6, CYP2C9, CYP2C19, and CYP3A4 substrates, and 3) pharmacokinetics in patients with liver function injury. The PBPK model successfully described observed plasma concentrations of olverembatinib from healthy subjects and patients with CML after a single administration, and predicted olverembatinib exposure increases when co-administered with itraconazole (strong CYP3A4 inhibitor) and decreases with rifampicin (strong CYP3A4 inducer), which were validated by observed data. The predicted results suggest that 1) strong, moderate, and mild CYP3A4 inhibitors (which have some overlap with CYP2C9 inhibitors) may increase olverembatinib exposure by approximately 2.39-, 1.80- to 2.39-, and 1.08-fold, respectively; strong, and moderate CYP3A4 inducers may decrease olverembatinib exposure by approximately 0.29-, and 0.35- to 0.56-fold, respectively 2); olverembatinib, as a “perpetrator,” would have no or limited impact on CYP1A2, CYP2B6, CYP2C9, CYP2C19, and CYP3A4 enzyme activity 3); systemic exposure of olverembatinib in liver function injury with Child-Pugh A, B, C may increase by 1.22-, 1.79-, and 2.13-fold, respectively. These simulations inform DDI risk for olverembatinib as either a “victim” or “perpetrator”

    FBXW7 promotes ferroptosis in head and neck squamous cell carcinoma cells through inhibiting c-Myc/SOX2/SLC7A11

    No full text
    Objective To explore the effect of FBXW7 on ferroptosis in head and neck squamous cell carcinoma. Methods Head and neck squamous cell lines HN4 and HN6 were cultured in vitro. FBXW7 and SOX2 overexpression plasmids were constructed, and the plasmids were stably transfected into cell lines. The overexpression transfection efficiency was verified at the transcription level and protein level by qRT-PCR and Western blot experiments, respectively. The lipid peroxidation levels of head and neck squamous cell carcinoma cells with overexpressing FBXW7 were verified by measuring malondialdehyde(MDA), glutathione(GSH), and reactive oxygen species(ROS) levels. After treating cells with ferroptosis inhibitor Fer-1, the changes in cell viability were further detected to verify the effect of FBXW7 on ferroptosis. The effect of transfection of the overexpressed plasmid on cellular pathways was detected by Western blot. Results HN4 and HN6 cell lines showed increased levels of lipid peroxidation after overexpression of FBXW7, and the ferroptosis inhibitor Fer-1 was able to effectively reverse the ferroptosis induced by overexpression of FBXW7. Western blot assay results showed that overexpression of FBXW7 reduced the expression of c-Myc, SOX2 and SLC7A11. Conclusion FBXW7 regulates the expression of SOX2-SLC7A11 by degrading c-Myc, thereby effectively regulating ferroptosis in HNSCC

    Association of Paternal Age Alone and Combined with Maternal Age with Perinatal Outcomes: A Prospective Multicenter Cohort Study in China

    No full text
    Abstract Maternal and paternal age at birth is increasing globally. Maternal age may affect perinatal outcomes, but the effect of paternal age and its joint effect with maternal age are not well established. This prospective, multicenter, cohort analysis used data from the University Hospital Advanced Age Pregnant Cohort Study in China from 2016 to 2021, to investigate the separate association of paternal age and joint association of paternal and maternal age with adverse perinatal outcomes. Of 16,114 singleton deliveries, mean paternal and maternal age (± SD) was 38.0 ± 5.3 years and 36.0 ± 4.1 years. In unadjusted analyses, older paternal age was associated with increased risks of gestational diabetes mellitus (GDM), hypertensive disorders of pregnancy, preeclampsia, placenta accreta spectrum disorders, placenta previa, cesarean delivery (CD), and postpartum hemorrhage, preterm birth (PTB), large-for-gestational-age, macrosomia, and congenital anomaly, except for small-for-gestational-age. In multivariable analyses, the associations turned to null for most outcomes, and attenuated but still significant for GDM, CD, PTB, and macrosomia. As compare to paternal age of < 30 years, the risks in older paternal age groups increased by 31–45% for GDM, 17–33% for CD, 32–36% for PTB, and 28–31% for macrosomia. The predicted probabilities of GDM, placenta previa, and CD increased rapidly with paternal age up to thresholds of 36.4–40.3 years, and then plateaued or decelerated. The risks of GDM, CD, and PTB were much greater for pregnancies with younger paternal and older maternal age, despite no statistical interaction between the associations related to paternal and maternal age. Our findings support the advocation that paternal age, besides maternal age, should be considered during preconception counseling. Trial Registration NCT03220750, Registered July 18, 2017—Retrospectively registered, https://classic.clinicaltrials.gov/ct2/show/NCT03220750
    corecore