1,076 research outputs found
Research on static and dynamic characteristics of a compound bearing with tilting pads and rolling bearing
According to the high stiffness requirement of bearings on spindle systems of precision machine tools, a kind of compound bearing composed of tilting pads and rolling bearing is proposed in this paper. In the start and stop process, the weight of rotor parts is borne by the rolling bearing, and the tilting pads avoid wear. When the spindle is reaching a certain speed, the rolling elements is disengaged from the outer ring of the rolling bearing, and the load is carried by the tilting pad bearing alone. The pivot position of the tilting pads can be defined by two characteristic parameters: Radial Pivot Position Coefficient (RPPC) and Circumferential Pivot Position Coefficient (CPPC). The influence laws of the pivot position parameters on the performance of compound bearing are synthetically analyzed. The results show that the stiffness of compound bearing can be effectively improved by proper design of the two pivot position parameters. The theoretical researches on this new compound bearing in this paper provide reference for bearing design of high stiffness spindle system
Does the Dirac Cone Exist in Silicene on Metal Substrates?
Absence of the Dirac cone due to a strong band hybridization is revealed to
be a common feature for epitaxial silicene on metal substrates according to our
first-principles calculations for silicene on Ir, Cu, Mg, Au, Pt, Al, and Ag
substrates. The destroyed Dirac cone of silicene, however, can be effectively
restored with linear or parabolic dispersion by intercalating alkali metal
atoms between silicene and the metal substrates, offering an opportunity to
study the intriguing properties of silicene without further transfer of
silicene from the metal substrates
Characteristic Analysis and Simulated Test of Hybrid Bearing with the Introduction of Piezoelectric Controller
A novel hybrid bearing with the introduction of piezoelectric controller and tilting pads to control vibration actively is proposed in this paper, and the feasibility of this scheme is verified by theoretical calculation and experimental data. This scheme can control the vibration of bearing actively by using the electromechanical characteristics of piezoelectric ceramic transducer (PZT) components. The static internal character of PZT and static external characteristic of piezoelectric control component are analyzed, and the calculation equations of preload coefficient and driving force of the new bearing are given. The simulation setup of the new bearing is designed and developed. The data representing the relationship of displacement of pad pivot, driving force, voltage, and the simulation stiffness of liquid film are obtained in the test, and the feature parameters of piezoelectric control component are amended to analyze the relationship between preload coefficient of the bearing and driving voltage. The proposed new bearing has the function of controlling preload actively. The theoretical and experimental research results provide essential guidance for the detail design of this new bearing and also provide a new idea for the vibration control of high speed rotor systems
Influence of the Anteromedial Portal and Transtibial Drilling Technique on Femoral Tunnel Lengths in ACL Reconstruction: Results Using an MRI-Based Model
BACKGROUND
In anatomic anterior cruciate ligament (ACL) reconstruction, graft placement through the anteromedial (AM) portal technique requires more horizontal drilling of the femoral tunnel as compared with the transtibial (TT) technique, which may lead to a shorter femoral tunnel and affect graft-to-bone healing. The effect of coronal and sagittal femoral tunnel obliquity angle on femoral tunnel length has not been investigated.
PURPOSE
To compare the length of the femoral tunnels created with the TT technique versus the AM portal technique at different coronal and sagittal obliquity angles using the native femoral ACL center as the starting point of the femoral tunnel. The authors also assessed sex-based differences in tunnel lengths.
STUDY DESIGN
Descriptive laboratory study.
METHODS
Magnetic resonance imaging scans of 95 knees with an ACL rupture (55 men, 40 women; mean age, 26 years [range, 16-45 years]) were used to create 3-dimensional models of the femur. The femoral tunnel was simulated on each model using the TT and AM portal techniques; for the latter, several coronal and sagittal obliquity angles were simulated (coronal, 30°, 45°, and 60°; sagittal, 45° and 60°), representing the 10:00, 10:30, and 11:00 clockface positions for the right knee. The length of the femoral tunnel was compared between the techniques and between male and female patients.
RESULTS
The mean ± SD femoral tunnel length with the TT technique was 40.0 ± 6.8 mm. A significantly shorter tunnel was created with the AM portal technique at 30° coronal/45° sagittal (35.5 ± 3.8 mm), whereas a longer tunnel was created at 60° coronal/60° sagittal (53.3 ± 5.3 mm; P < .05 for both). The femoral tunnel created with the AM portal technique at 45° coronal/45° sagittal (40.7 ± 4.8 mm) created a similar tunnel length as the TT technique. For all techniques, the femoral tunnel was significantly shorter in female patients than male patients.
CONCLUSION
The coronal and sagittal obliquity angles of the femoral tunnel in ACL reconstruction can significantly affect its length. The femoral tunnel created with the AM portal technique at 45° coronal/45° sagittal was similar to that created with the TT technique.
CLINICAL RELEVANCE
Surgeons should be aware of the femoral tunnel shortening with lower coronal obliquity angles, especially in female patients
- …