366 research outputs found

    Negative to Positive Crossover of Magnetoresistance in Layered WS2 with Ohmic Contact

    Full text link
    The discovery of graphene has ignited intensive investigation on two dimensional (2D) materials. Among them, transition metal dichalcogenide (TMDC), a typical representative, attracts much attention due to the excellent performance in field effect transistor (FET) related measurements and applications. Particularly, when TMDC eventually reaches few-layer dimension, a wide range of electronic and optical properties, in striking contrast to bulk samples, are detected. In this Letter, we synthesized single crystalline WS2 nanoflakes by physical vapor deposition (PVD) method and carried out a series of transport measurements of contact resistance and magnetoresistance. Focused ion beam (FIB) technology was applied to deposit Pt electrodes on WS2 flakes. Different from the electron beam lithography (EBL) fabricated electrodes, FIB-deposited leads exhibited ohmic contact, resolving the dilemma of Schottky barrier. Furthermore, a temperature-modulated negative-to-positive transition of magnetoresistance (MR) associated with a crossover of carrier type at similar temperature was demonstrated. Our work offers a pathway to optimize the contact for TMDC and reveals the magnetoresistance characteristics of WS2 flakes, which may stimulate further studies on TMDC and corresponding potential electronic and optoelectronic applications

    Performance evaluation of packet radio networks

    Get PDF
    The first ground wireless packet switching radio network, named the ALOHA network, was implemented in the early 1970s at University of Hawaii. The most distinct features of a packet radio network are: (1) the absence of physical connections between users, (2) the sharing of a common transmission medium, and (3) the broadcasting capability of each user. Today, the packet radio network technology is widely used in a variety of civilian as well as military applications;The throughput of a packet radio network is defined as the percentage of time the channel carries good packets. It is largely determined by the channel access method, the signal propagation characteristics, and the capture effect at a receiver. In this dissertation, we present two packet radio network models under the Slotted ALOHA channel access method and a capture model which is based on the relative strength of signal powers of the desired packet and the interfering packets;The first model is a single-hop network with a central station and finite number of users randomly distributed in a limited area. All the users communicate with each other through the central station, which is within one hop distance of all users. Given a density distribution function for the distance of a user, we show that there is an optimal transmission probability which maximizes the throughput of the network. Also, under a light traffic load, the throughput of a remote user is relatively insensitive to its distance from the station;The second model is a multi-hop network where a user is equipped with a directional antenna and not every user can directly communicate with every other else. As a result, a user communicates with another user either directly in a single hop or through some intermediate users in multiple hops. The location of all users is modeled by a two-dimensional Poisson process with an average of [lambda] users per unit area. By balancing the transmission probability and the antenna beam width, we show that the maximum hop-by-hop progress of a packet can be achieved when the transmitter and the receiver are separated by an optimal distance

    Experimental Investigation of Flow Control Using Blade End Slots in a Highly Loaded Compressor Cascade

    Get PDF
    International audienceA detailed experimental investigation is conducted to suppress three-dimensional (3D) corner separation by a proposed passive control method using blade end slots in a highly loaded high-speed compressor cascade. Experiments are carried out under a wide range of incidence angles at Ma=0.59 using blades with and without blade end slots, respectively. Based on the experimental results, extensive comparisons show that the proposed method using blade end slots can efficiently suppress the 3D corner separation and broaden the effective operating range in the highly loaded high-speed compressor cascade. The total pressure loss is significantly reduced under most conditions. The reduction of total pressure loss in the measurement plane is as high as 18.4%, 20.6%, 24.3% and 39.4% at the incidence angle of-1.69˚, 0˚, 2˚ and 4˚, respectively. Furthermore, spanwise distributions of the pitch-averaged total pressure loss and deviation angle as well as the 3D flow field structures are analyzed to reveal the flow control mechanisms using blade end slots. The blade end slots can generate self-adaptive high momentum jet flow through the pressure difference from blade pressure and suction surface. These jet flows from the blade end slots effect downstream along the blade suction surface and significantly increase the flow momentum in the corner region. The main secondary vortex structures are suppressed by the high momentum jet flow; the 3D corner separation is reduced, and the two-dimesionality in the mid-span region is enhanced

    RNA-Puzzles Round IV:3D structure predictions of four ribozymes and two aptamers

    Get PDF
    International audienceRNA-Puzzles is a collective endeavor dedicated to the advancement and improvement of RNA 3D structure prediction. With agreement from crystallographers, the RNA structures are predicted by various groups before the publication of the crystal structures. We now report the prediction of 3D structures for six RNA sequences: four nucleolytic ribozymes and two riboswitches. Systematic protocols for comparing models and crystal structures are described and analyzed. In these six puzzles, we discuss (i) the comparison between the automated web servers and human experts; (ii) the prediction of coaxial stacking; (iii) the prediction of structural details and ligand binding; (iv) the development of novel prediction methods; and (v) the potential improvements to be made. We show that correct prediction of coaxial stacking and tertiary contacts is essential for the prediction of RNA architecture, while ligand binding modes can only be predicted with low resolution and simultaneous prediction of RNA structure with accurate ligand binding still remains out of reach. All the predicted models are available for the future development of force field parameters and the improvement of comparison and assessment tools

    Case Report: A case of thoracoscopic mediastinal tumor resection in a child with ROHHAD syndrome

    Get PDF
    Rapid-onset obesity with hypoventilation, hypothalamic dysfunction, and autonomic dysregulation (ROHHAD) is an exceptionally rare condition. This case report highlights a child diagnosed with ROHHAD syndrome, presenting with a mediastinal tumor. ROHHAD syndrome is characterized by early onset obesity, hypothalamic dysfunction, autonomic dysfunction, inadequate ventilation, suspected seizures, and abnormal behavior. The presence of a mediastinal tumor necessitated surgical intervention. Key considerations during surgery included hypernatremia due to hypothalamic dysfunction, potential airway challenges, preoperative anemia, and hemodynamic fluctuations during the removal of the sizable mediastinal tumor. Comprehensive preparations ensured a safe operation. Notably, some children with this syndrome may exhibit symptoms such as decreased gastrointestinal function, polyuria, and thermoregulatory disturbances. Vigilance is essential during anesthesia assessment in these patients. Anesthesiologists should enhance their knowledge of this condition and tailor their management strategies based on individual clinical presentations and the specific planned surgical procedures

    Identification of biomarkers and mechanisms of diabetic cardiomyopathy using microarray data

    Get PDF
    Background: The study aimed to uncover the regulation mechanisms of diabetic cardiomyopathy (DCM) and provide novel prognostic biomarkers. Methods: The dataset GSE62203 downloaded from the Gene Expression Omnibus database was utilized in the present study. After pretreatment using the Affy package, differentially expressed genes (DEGs) were identified by the limma package, followed by functional enrichment analysis and protein– protein interaction (PPI) network analysis. Furthermore, module analysis was conducted using MCODE plug-in of Cytoscape, and functional enrichment analysis was also performed for genes in the modules. Results: A set of 560 DEGs were screened, mainly enriched in the metabolic process and cell cycle related process. Hub nodes in the PPI network were LDHA (lactate dehydrogenase A), ALDOC (aldolase C, fructose-bisphosphate) and ABCE1 (ATP Binding Cassette Subfamily E Member 1), which were also highlighted in Module 1 or Module 2 and predominantly enriched in the processes of glycolysis and ribosome biogenesis. Additionally, LDHA were linked with ALDOC in the PPI network. Besides, activating transcription factor 4 (ATF4) was prominent in Module 3; while myosin heavy chain 6 (MYH6) was highlighted in Module 4 and was mainly involved in muscle cells related biological processes. Conclusions: Five potential biomarkers including LDHA, ALDOC, ABCE1, ATF4 and MYH6 were identified for DCM prognosis

    Observation of Quantum Griffiths Singularity and Ferromagnetism at Superconducting LaAlO3/SrTiO3(110) Interface

    Full text link
    Diverse phenomena emerge at the interface between band insulators LaAlO3 and SrTiO3, such as superconductivity and ferromagnetism, showing an opportunity for potential applications as well as bringing fundamental research interests. Particularly, the two-dimensional electron gas formed at LaAlO3/SrTiO3 interface offers an appealing platform for quantum phase transition from a superconductor to a weakly localized metal. Here we report the superconductor-metal transition in superconducting two-dimensional electron gas formed at LaAlO3/SrTiO3(110) interface driven by a perpendicular magnetic field. Interestingly, when approaching the quantum critical point, the dynamic critical exponent is not a constant but a diverging value, which is a direct evidence of quantum Griffiths singularity raised from quenched disorder at ultralow temperatures. Furthermore, the hysteretic property of magnetoresistance was firstly observed at LaAlO3/SrTiO3(110) interfaces, which suggests potential coexistence of superconductivity and ferromagnetism

    Prevention of Streptozotocin-Induced Diabetic Nephropathy by MG132: Possible Roles of Nrf2 and I κ

    Get PDF
    Our previous study showed that proteasomal inhibitor MG132 can prevent diabetic nephropathy (DN) along with upregulation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). The present study was to investigate whether MG132 can prevent DN in wild-type and Nrf2-KO mice. Type 1 diabetes was induced in wild-type and Nrf2-KO mice by multiple low doses of streptozotocin. Two weeks after streptozotocin injection, both wild-type and Nrf2-KO mice were randomly divided into four groups: control, MG132, DM, and DM/MG132. MG132 (10 μg/kg/day) or vehicle was administered intraperitoneally for 4 months. Renal function, morphology, and biochemical changes were measured after 4-month treatment with MG132. MG132 treatment suppressed proteasomal activity in the two genotypes. In wild-type mice, MG132 attenuated diabetes-induced renal dysfunction, fibrosis, inflammation, and oxidative damage along with increased Nrf2 and IκB expression. Deletion of Nrf2 gene resulted in a partial, but significant attenuation of MG132 renal protection in Nrf2-KO mice compared with wild-type mice. MG132-increased IκB expression was not different between wild-type and Nrf2-KO mice. This work indicates that MG132 inhibits diabetes-increased proteasomal activity, resulting in Nrf2 and IκB upregulation and renal protection, which could be used as a strategy to prevent diabetic nephropathy

    Superconductivity in topologically nontrivial material Au2Pb

    Full text link
    The search for nontrivial superconductivity in novel quantum materials is currently a most attractive topic in condensed matter physics and material science. The experimental studies have progressed quickly over the past couple of years. In this article, we report systematic studies of superconductivity in Au2Pb single crystals. The bulk superconductivity (onset transition temperature, Tconset= 1.3 K) of Au2Pb is characterized by both transport and diamagnetic measurements, where the upper critical field Hc2 shows unusual quasi-linear temperature dependence. The superconducting gap is revealed by point contact measurement with gold tip. However, when using tungsten (W) tip, which is much harder, the superconducting gap probed is largely enhanced as demonstrated by the increases of both Tconset and upper critical field (Hc2). This can be interpreted as a result of increase in density of states under external anisotropic stress imposed by the tip, as revealed by first-principles calculations. Furthermore, novel phase winding of the pseudospin texture along k-space loops around the Fermi energy is uncovered from the calculations, indicating that the observed superconductivity in Au2Pb may have nontrivial topology

    A New Luminous blue variable in the outskirt of the Andromeda Galaxy

    Get PDF
    The hot massive luminous blue variables (LBVs) represent an important evolutionary phase of massive stars. Here, we report the discovery of a new LBV -- LAMOST J0037+4016 in the distant outskirt of the Andromeda galaxy. It is located in the south-western corner (a possible faint spiral arm) of M31 with an unexpectedly large projection distance of \sim 22 kpc from the center. The optical light curve shows a 1.2 mag variation in VV band and its outburst and quiescence phases both last over several years. The observed spectra indicate an A-type supergiant at epoch close to the outburst phase and a hot B-type supergiant with weak [Fe II] emission lines at epoch of much dimmer brightness. The near-infrared color-color diagram further shows it follows the distribution of Galactic and M31 LBVs rather than B[e] supergiants. All the existing data strongly show that LAMOST J0037+4016 is an LBV. By spectral energy distribution fitting, we find it has a luminosity (4.42±1.644.42 \pm 1.64)×105\times 10^5 LL_{\odot} and an initial mass 30\sim 30 MM_{\odot}, indicating its nature of less luminosity class of LBV.Comment: 7 pages, 4 figures, 3 tables, accepted by ApJ
    corecore