30 research outputs found
Air pollution–aerosol interactions produce more bioavailable iron for ocean ecosystems
It has long been hypothesized that acids formed from anthropogenic pollutants and natural emissions dissolve iron (Fe) in airborne particles, enhancing the supply of bioavailable Fe to the oceans. However, field observations have yet to provide indisputable evidence to confirm this hypothesis. Single-particle chemical analysis for hundreds of individual atmospheric particles collected over the East China Sea shows that Fe-rich particles from coal combustion and steel industries were coated with thick layers of sulfate after 1 to 2 days of atmospheric residence. The Fe in aged particles was present as a “hotspot” of (insoluble) iron oxides and throughout the acidic sulfate coating in the form of (soluble) Fe sulfate, which increases with degree of aging (thickness of coating). This provides the “smoking gun” for acid iron dissolution, because iron sulfate was not detected in the freshly emitted particles and there is no other source or mechanism of iron sulfate formation in the atmosphere
Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy
Investigation of intrinsic origins of the signal uncertainty for laser-induced breakdown spectroscopy
A comparative study of nanoparticle-enhanced laser-induced breakdown spectroscopy
Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy (NELIBS) has gained much attention due to its capability of improving spectral intensity and detection sensitivity. The merits and demerits of NELIBS were evaluted in this study.</p
Wavelength Dependence in the Analysis of Carbon Content in Coal by Nanosecond 266 nm and 1064 nm Laser Induced Breakdown Spectroscopy
Quantitative carbon analysis in coal by combining data processing and spatial confinement in laser-induced breakdown spectroscopy
Radiometric calibration of a multiphoton microscope capable of measuring absolute photon flux of single photon sources
Precise photon flux measurement of single photon sources (SPSs) is essential to the successful application of SPSs. In this work, a novel method, to our knowledge, was proposed for direct measurement of the absolute photon flux of single photon sources with a femtosecond laser multiphoton microscope. A secondary 2-mm-diameter aperture was installed under the microscope objective to define the numerical aperture (NA) of the microscope. The defined NA was precisely measured to be 0.447. An LED-based miniaturized integrating sphere light source (LED-ISLS) was used as a standard radiance source to calibrate the photon flux responsivity of the multiphoton microscope, with the defined NA. The combined standard uncertainty of the measured photon flux responsivity was 1.97%. Absolute photon flux from a quantum-dot based emitter was measured by the multiphoton microscope. The uncertainty of the photon flux was evaluated to be 2.1%. This work offers a new, to our knowledge, radiometric method for fast calibration of photon flux responsivity of microscopes, and absolute photon flux calibration of single photon sources.</jats:p
Application of a Spectrum Standardization Method for Carbon Analysis in Coal Using Laser-Induced Breakdown Spectroscopy (LIBS)
Measurement of coal carbon content using laser-induced breakdown spectroscopy (LIBS) is limited by its low precision and accuracy. A modified spectrum standardization method was proposed to achieve both reproducible and accurate results for the quantitative analysis of carbon content in coal using LIBS. The proposed method used the molecular emissions of diatomic carbon (C2) and cyanide (CN) to compensate for the diminution of atomic carbon emissions in high volatile content coal samples caused by matrix effect. The compensated carbon line intensities were further converted into an assumed standard state with standard plasma temperature, electron number density, and total number density of carbon, under which the carbon line intensity is proportional to its concentration in the coal samples. To obtain better compensation for fluctuations of total carbon number density, the segmental spectral area was used and an iterative algorithm was applied that is different from our previous spectrum standardization calculations. The modified spectrum standardization model was applied to the measurement of carbon content in 24 bituminous coal samples. The results demonstrate that the proposed method has superior performance over the generally applied normalization methods. The average relative standard deviation was 3.21%, the coefficient of determination was 0.90, the root mean square error of prediction was 2.24%, and the average maximum relative error for the modified model was 12.18%, showing an overall improvement over the corresponding values for the normalization with segmental spectrum area, 6.00%, 0.75, 3.77%, and 15.40%, respectively. </jats:p
