30 research outputs found

    Examining the Interactome of Huperzine A by Magnetic Biopanning

    Get PDF
    Huperzine A is a bioactive compound derived from traditional Chinese medicine plant Qian Ceng Ta (Huperzia serrata), and was found to have multiple neuroprotective effects. In addition to being a potent acetylcholinesterase inhibitor, it was thought to act through other mechanisms such as antioxidation, antiapoptosis, etc. However, the molecular targets involved with these mechanisms were not identified. In this study, we attempted to exam the interactome of Huperzine A using a cDNA phage display library and also mammalian brain tissue extracts. The drugs were chemically linked on the surface of magnetic particles and the interactive phages or proteins were collected and analyzed. Among the various cDNA expressing phages selected, one was identified to encode the mitochondria NADH dehydrogenase subunit 1. Specific bindings between the drug and the target phages and target proteins were confirmed. Another enriched phage clone was identified as mitochondria ATP synthase, which was also panned out from the proteome of mouse brain tissue lysate. These data indicated the possible involvement of mitochondrial respiratory chain matrix enzymes in Huperzine A's pharmacological effects. Such involvement had been suggested by previous studies based on enzyme activity changes. Our data supported the new mechanism. Overall we demonstrated the feasibility of using magnetic biopanning as a simple and viable method for investigating the complex molecular mechanisms of bioactive molecules

    The Pyramiding of Elite Allelic Genes Related to Grain Number Increases Grain Number per Panicle Using the Recombinant Lines Derived from <i>Indica–japonica</i> Cross in Rice

    No full text
    Indica(xian)-japonica(geng) hybrid rice has many heterosis traits that can improve rice yield. However, the traditional hybrid technology will struggle to meet future needs for the development of higher-yield rice. Available genomics resources can be used to efficiently understand the gene-trait association trait for rice breeding. Based on the previously constructed high-density genetic map of 272 high-generation recombinant inbred lines (RILs) originating from the cross of Luohui 9 (indica, as female) and RPY geng (japonica, as male) and high-quality genomes of parents, here, we further explore the genetic basis for an important complex trait: possible causes of grain number per panicle (GNPP). A total of 20 genes related to grains number per panicle (GNPP) with the differences of protein amino acid between LH9 and RPY were used to analyze genotype combinations, and PCA results showed a combination of PLY1, LAX1, DTH8 and OSH1 from the RPY geng with PYL4, SP1, DST and GNP1 from Luohui 9 increases GNPP. In addition, we also found that the combination of LAX1-T2 and GNP1-T3 had the most significant increase in GNPP. Notably, Molecular Breeding Knowledgebase (MBK) showed a few aggregated rice cultivars, LAX1-T2 and GNP1-T3, which may be a result of the natural geographic isolation between the two gene haplotypes. Therefore, we speculate that the pyramiding of japonica-type LAX-T2 with indica-type GNP1-T3 via hybridization can significantly improve rice yield by increasing GNPP

    Inter-arrival time distribution of passengers at service facilities in underground subway stations: A case study of the metropolitan city of Chengdu in China

    No full text
    Inter-arrival time distribution of passengers plays an important role in the capacity design of service facilities such as, fare gate, ticket vending machine, and passageways, in an underground subway station. An inaccurate inter-arrival time distribution likely causes traffic congestion or resource wastage at service facilities. In this study, to obtain accurate inter-arrival time distribution, we collected an inter-arrival time of passengers at existing service facilities in three underground subway stations of a metropolitan city, Chengdu, China. We fitted eight types of distributions, including Hyper-Erlang distribution (HErD), which is firstly introduced in the capacity design of service facilities in an underground subway station, to the observed data set based on maximum likelihood estimation. Results showed that the HErD works the best in terms of fitting quality and flexibility. We also fitted eight types of distribution to the observed inter-arrival time data at service facilities of seventy-seven underground subway stations of another metropolitan city—Shenzhen, China—to confirm our findings. Results also showed the HErD still performs the best. Simulation is also conducted to examine the effect of inter-arrival distributions on the performance of service facilities. To estimate future inter-arrival time based on HErD for the capacity design of service facilities to be constructed in the planning period, we developed a basic parameter estimation model according to two given design parameters namely, long-term peak-hour volume and peak-hour factor. However, the proposed model did not work well because the HErD has many free parameters to be estimated. Thus, we derived a method to reduce the number of free parameters, and then we proposed an improved parameter estimation model of HErD to describe future inter-arrival time distribution based on given long-term peak-hour volume and peak-hour factor

    Sugar Transporter Proteins (STPs) in Gramineae Crops: Comparative Analysis, Phylogeny, Evolution, and Expression Profiling

    No full text
    Sugar transporter proteins (STPs), such as H+/sugar symporters, play essential roles in plants&rsquo; sugar transport, growth, and development, and possess an important potential to enhance plants&rsquo; performance of multiple agronomic traits, especially crop yield and stress tolerance. However, the evolutionary dynamics of this important gene family in Gramineae crops are still not well-documented and functional differentiation of rice STP genes remain unclear. To address this gap, we conducted a comparative genomic study of STP genes in seven representative Gramineae crops, which are Brachypodium distachyon (Bd), Hordeum vulgare (Hv), Setaria italica (Si), Sorghum bicolor (Sb), Zea mays (Zm), Oryza rufipogon (Or), and Oryza sativa ssp. japonica (Os). In this case, a total of 177 STP genes were identified and grouped into four clades. Of four clades, the Clade I, Clade III, and Clade IV showed an observable number expansion compared to Clade II. Our results of identified duplication events and divergence time of duplicate gene pairs indicated that tandem, Whole genome duplication (WGD)/segmental duplication events play crucial roles in the STP gene family expansion of some Gramineae crops (expect for Hv) during a long-term evolutionary process. However, expansion mechanisms of the STP gene family among the tested species were different. Further selective force studies revealed that the STP gene family in Gramineae crops was under purifying selective forces and different clades and orthologous groups with different selective forces. Furthermore, expression analysis showed that rice STP genes play important roles not only in flower organs development but also under various abiotic stresses (cold, high-temperature, and submergence stresses), blast infection, and wounding. The current study highlighted the expansion and evolutionary patterns of the STP gene family in Gramineae genomes and provided some important messages for the future functional analysis of Gramineae crop STP genes

    Genome-Wide Identification and Evolution Analysis of the Gibberellin Oxidase Gene Family in Six Gramineae Crops

    No full text
    The plant hormones gibberellins (GAs) regulate plant growth and development and are closely related to the yield of cash crops. The GA oxidases (GAoxs), including the GA2ox, GA3ox, and GA20ox subfamilies, play pivotal roles in GAs&rsquo; biosynthesis and metabolism, but their classification and evolutionary pattern in Gramineae crops remain unclear. We thus conducted a comparative genomic study of GAox genes in six Gramineae representative crops, namely, Setaria italica (Si), Zea mays (Zm), Sorghum bicolor (Sb), Hordeum vulgare (Hv), Brachypodium distachyon (Bd), and Oryza sativa (Os). A total of 105 GAox genes were identified in these six crop genomes, belonging to the C19-GA2ox, C20-GA2ox, GA3ox, and GA20ox subfamilies. Based on orthogroup (OG) analysis, GAox genes were divided into nine OGs and the number of GAox genes in each of the OGs was similar among all tested crops, which indicated that GAox genes may have completed their family differentiations before the species differentiations of the tested species. The motif composition of GAox proteins showed that motifs 1, 2, 4, and 5, forming the 2OG-FeII_Oxy domain, were conserved in all identified GAox protein sequences, while motifs 11, 14, and 15 existed specifically in the GA20ox, C19-GA2ox, and C20-GA2ox protein sequences. Subsequently, the results of gene duplication events suggested that GAox genes mainly expanded in the form of WGD/SD and underwent purification selection and that maize had more GAox genes than other species due to its recent duplication events. The cis-acting elements analysis indicated that GAox genes may respond to growth and development, stress, hormones, and light signals. Moreover, the expression profiles of rice and maize showed that GAox genes were predominantly expressed in the panicles of the above two plants and the expression of several GAox genes was significantly induced by salt or cold stresses. In conclusion, our results provided further insight into GAox genes&rsquo; evolutionary differences among six representative Gramineae and highlighted GAox genes that may play a role in abiotic stress

    Meta-Analysis of Salt Stress Transcriptome Responses in Different Rice Genotypes at the Seedling Stage

    No full text
    Rice (Oryza sativa L.) is one of the most important staple food crops worldwide, while its growth and productivity are threatened by various abiotic stresses, especially salt stress. Unraveling how rice adapts to salt stress at the transcription level is vital. It can provide valuable information on enhancing the salt stress tolerance performance of rice via genetic engineering technologies. Here, we conducted a meta-analysis of different rice genotypes at the seedling stage based on 96 public microarray datasets, aiming to identify the key salt-responsive genes and understand the molecular response mechanism of rice under salt stress. In total, 5559 genes were identified to be differentially expressed genes (DEGs) under salt stress, and 3210 DEGs were identified during the recovery process. The Gene Ontology (GO) enrichment results revealed that the salt-response mechanisms of shoots and roots were different. A close-knit signaling network, consisting of the Ca2+ signal transduction pathway, the mitogen-activated protein kinase (MAPK) cascade, multiple hormone signals, transcription factors (TFs), transcriptional regulators (TRs), protein kinases (PKs), and other crucial functional proteins, plays an essential role in rice salt stress response. In this study, many unreported salt-responsive genes were found. Besides this, MapMan results suggested that TNG67 can shift to the fermentation pathway to produce energy under salt stress and may enhance the Calvin cycle to repair a damaged photosystem during the recovery stage. Taken together, these findings provide novel insights into the salt stress molecular response and introduce numerous candidate genes for rice salt stress tolerance breeding

    Vehicle Safety Enhancement System: Sensing and Communication

    No full text
    With the substantial increase of vehicles on road, driving safety and transportation efficiency have become increasingly concerned focus from drivers, passengers, and governments. Wireless networks constructed by vehicles and infrastructures provide abundant information to share for the sake of both enhanced safety and network efficiency. This paper presents the systematic research to enhance the vehicle safety by wireless communication, in the aspects of information acquisition through vehicle sensing, vehicle-to-vehicle (V2V) routing protocol for the highly dynamic vehicle network, vehicle-to-infrastructure (V2I) routing protocol for a tradeoff in real-time performance and load balance, and hardware implementation of V2V system with on-road test. Simulations and experimental result validate the feasibility of the algorithms and communication system

    Evaluation of Heterocyclic Carboxamides as Potential Efflux Pump Inhibitors in Pseudomonas aeruginosa

    No full text
    The ability to rescue the activity of antimicrobials that are no longer effective against bacterial pathogens such as Pseudomonas aeruginosa is an attractive strategy to combat antimicrobial drug resistance. Herein, novel efflux pump inhibitors (EPIs) demonstrating strong potentiation in combination with levofloxacin against wild-type P. aeruginosa ATCC 27853 are presented. A structure activity relationship of aryl substituted heterocyclic carboxamides containing a pentane diamine side chain is described. Out of several classes of fused heterocyclic carboxamides, aryl indole carboxamide compound 6j (TXA01182) at 6.25 &micro;g/mL showed 8-fold potentiation of levofloxacin. TXA01182 was found to have equally synergistic activities with other antimicrobial classes (monobactam, fluoroquinolones, sulfonamide and tetracyclines) against P. aeruginosa. Several biophysical and genetic studies rule out membrane disruption and support efflux inhibition as the mechanism of action (MOA) of TXA01182. TXA01182 was determined to lower the frequency of resistance (FoR) of the partner antimicrobials and enhance the killing kinetics of levofloxacin. Furthermore, TXA01182 demonstrated a synergistic effect with levofloxacin against several multidrug resistant P. aeruginosa clinical isolates

    Evaluation of a Conformationally Constrained Indole Carboxamide as a Potential Efflux Pump Inhibitor in Pseudomonas&nbsp;aeruginosa

    No full text
    Efflux pumps in Gram-negative bacteria such as Pseudomonas aeruginosa provide intrinsic antimicrobial resistance by facilitating the extrusion of a wide range of antimicrobials. Approaches for combating efflux-mediated multidrug resistance involve, in part, developing indirect antimicrobial agents capable of inhibiting efflux, thus rescuing the activity of antimicrobials previously rendered inactive by efflux. Herein, TXA09155 is presented as a novel efflux pump inhibitor (EPI) formed by conformationally constraining our previously reported EPI TXA01182. TXA09155 demonstrates strong potentiation in combination with multiple antibiotics with efflux liabilities against wild-type and multidrug-resistant (MDR) P.&nbsp;aeruginosa. At 6.25 &micro;g/mL, TXA09155, showed &ge;8-fold potentiation of levofloxacin, moxifloxacin, doxycycline, minocycline, cefpirome, chloramphenicol, and cotrimoxazole. Several biophysical and genetic studies rule out membrane disruption and support efflux inhibition as the mechanism of action (MOA) of TXA09155. TXA09155 was determined to lower the frequency of resistance (FoR) to levofloxacin and enhance the killing kinetics of moxifloxacin. Most importantly, TXA09155 outperformed the levofloxacin-potentiation activity of EPIs TXA01182 and MC-04,124 against a CDC/FDA panel of MDR clinical isolates of P. aeruginosa. TXA09155 possesses favorable physiochemical and ADME properties that warrant its optimization and further development
    corecore