6 research outputs found

    FOD Detection Method Based on Iterative Adaptive Approach for Millimeter-Wave Radar

    No full text
    Using millimeter-wave radar to scan and detect small foreign object debris (FOD) on an airport runway surface is a popular solution in civil aviation safety. Since it is impossible to completely eliminate the interference reflections arising from strongly scattering targets or non-homogeneous clutter after clutter cancellation processing, the consequent high false alarm probability has become a key problem to be solved. In this article, we propose a new FOD detection method for interference suppression and false alarm reduction based on an iterative adaptive approach (IAA) algorithm, which is a non-parametric, weighted least squares-based iterative adaptive processing approach that can provide super-resolution capability. Specifically, we first obtain coarse FOD target information by data preprocessing in a conventional detection method. Then, a refined data processing step is conducted based on the IAA algorithm in the azimuth direction. Finally, multiple pieces of information from the two steps above are used to comprehensively distinguish false alarms by fusion processing; thus, we can acquire accurate FOD target information. Real airport data measured by a 93 GHz radar are used to validate the proposed method. Experimental results of the test scene, which include golf balls with a diameter of 43 mm, were placed about 300 m away from radar, which show that the proposed method can effectively reduce the number of false alarms when compared with a traditional FOD detection method. Although metal balls with a diameter of 50 mm were placed about 660 m away from radar, they also can obtain up to 2.2 times azimuth super-resolution capability

    FOD Detection Method Based on Iterative Adaptive Approach for Millimeter-Wave Radar

    No full text
    Using millimeter-wave radar to scan and detect small foreign object debris (FOD) on an airport runway surface is a popular solution in civil aviation safety. Since it is impossible to completely eliminate the interference reflections arising from strongly scattering targets or non-homogeneous clutter after clutter cancellation processing, the consequent high false alarm probability has become a key problem to be solved. In this article, we propose a new FOD detection method for interference suppression and false alarm reduction based on an iterative adaptive approach (IAA) algorithm, which is a non-parametric, weighted least squares-based iterative adaptive processing approach that can provide super-resolution capability. Specifically, we first obtain coarse FOD target information by data preprocessing in a conventional detection method. Then, a refined data processing step is conducted based on the IAA algorithm in the azimuth direction. Finally, multiple pieces of information from the two steps above are used to comprehensively distinguish false alarms by fusion processing; thus, we can acquire accurate FOD target information. Real airport data measured by a 93 GHz radar are used to validate the proposed method. Experimental results of the test scene, which include golf balls with a diameter of 43 mm, were placed about 300 m away from radar, which show that the proposed method can effectively reduce the number of false alarms when compared with a traditional FOD detection method. Although metal balls with a diameter of 50 mm were placed about 660 m away from radar, they also can obtain up to 2.2 times azimuth super-resolution capability

    Fourfold Bounce Scattering-Based Reconstruction of Building Backs Using Airborne Array TomoSAR Point Clouds

    No full text
    Building reconstruction using high-resolution tomographic synthetic aperture radar (TomoSAR) point clouds has been very attractive in numerous applications, such as urban planning and dynamic city modeling. However, for side-looking TomoSAR, it is a challenge to reconstruct the obscured backs of buildings using traditional single-bounce scattering-based methods. It comes to our attention that the higher-order scattering points in airborne array TomoSAR point clouds may provide rich information on the backs of buildings. In this paper, the fourfold bounce (FB) scattering model of combined buildings in airborne array TomoSAR is derived, which not only explains the cause of FB scattering but also gives the distribution pattern of FB scattering points. Furthermore, a novel FB scattering-based method for the reconstruction of building backs is proposed. First, a two-step geometric constraint is used to detect the candidate FB scattering points. Subsequently, the FB scattering points are further detected by seed point selection and density estimation in the radar coordinate system. Finally, the backs of buildings can be reconstructed using the footprint inverted from the FB scattering points and the height information of the illuminated facades. To verify the FB scattering model and the effectiveness of the proposed method, the results from the simulated point clouds and the real airborne array TomoSAR point clouds are presented. Compared with the traditional roof point-based methods, the outstanding advantage of the proposed method is that it allows for the high-precision reconstruction of building backs, even in the case of poor roof points. Moreover, this paper may provide a novel perspective for the three-dimensional (3D) reconstruction of dense urban areas

    A Geometry Constrained Moving Least Squares-based High-precision 3D Reconstruction Method of Mountains from TomoSAR Point Clouds

    No full text
    Tomographic Synthetic Aperture Radar (TomoSAR) is an advanced technology for three-dimensional (3D) mountain reconstruction. However, the TomoSAR mountain point clouds have a significant location error in the elevation direction, making high-precision 3D reconstruction of mountains difficult. A geometry constrained Moving Least Squares (MLS)-based high-precision 3D reconstruction method is addressed in this issue. This method not only has the benefits of the traditional MLS in that it uses the local subspace principle for fitting complex surface structures but also fully uses the TomoSAR point cloud characteristic of monotonically increasing elevation with ground distance for reconstruction error correction. The point clouds are first projected onto a new azimuth-ground-elevation domain. Subsequently, the suggested iterative solution-based geometry constrained MLS performs location error correction in the elevation direction. Finally, the projection transformation is used to generate 3D reconstruction results of mountains. The simulation and measurement of airborne array TomoSAR mountain data, AW3D30 DSM data, and 1:10,000 DEM data validate the effectiveness of the proposed method and demonstrate the feasibility and superiority of airborne array TomoSAR for applications such as high-precision 3D mountain reconstruction

    An Elevation Ambiguity Resolution Method Based on Segmentation and Reorganization of TomoSAR Point Cloud in 3D Mountain Reconstruction

    No full text
    Tomographic Synthetic Aperture Radar (TomoSAR) is a breakthrough of the traditional SAR, which has the three-dimentional (3D) observation ability of layover scenes such as buildings and high mountains. As an advanced system, the airborne array TomoSAR can effectively avoid temporal de-correlation caused by long revisit time, which has great application in high-precision mountain surveying and mapping. The 3D reconstruction using TomoSAR has mainly focused on low targets, while there are few literatures on 3D mountain reconstruction. Due to the layover phenomenon, surveying in high mountain areas remains a difficult task. Consequently, it is meaningful to carry out the research on 3D mountain reconstruction using the airborne array TomoSAR. However, the original TomoSAR mountain point cloud faces the problem of elevation ambiguity. Furthermore, for mountains with complex terrain, the points located in different elevation periods may intersect. This phenomenon increases the difficulty of solving the problem. In this paper, a novel elevation ambiguity resolution method is proposed. First, Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Gaussian Mixture Model (GMM) are combined for point cloud segmentation. The former ensures coarse segmentation based on density, and the latter allows fine segmentation of the abnormal categories caused by intersection. Subsequently, the segmentation results are reorganized in the elevation direction to reconstruct all possible point clouds. Finally, the real point cloud can be extracted automatically under the constraints of the boundary and elevation continuity. The performance of the proposed method is demonstrated by simulations and experiments. Based on the airborne array TomoSAR experiment in Leshan City, Sichuan Province, China in 2019, the 3D model of the surveyed mountain is presented. Moreover, three kinds of external data are applied to fully verify the validity of this method

    An Elevation Ambiguity Resolution Method Based on Segmentation and Reorganization of TomoSAR Point Cloud in 3D Mountain Reconstruction

    No full text
    Tomographic Synthetic Aperture Radar (TomoSAR) is a breakthrough of the traditional SAR, which has the three-dimentional (3D) observation ability of layover scenes such as buildings and high mountains. As an advanced system, the airborne array TomoSAR can effectively avoid temporal de-correlation caused by long revisit time, which has great application in high-precision mountain surveying and mapping. The 3D reconstruction using TomoSAR has mainly focused on low targets, while there are few literatures on 3D mountain reconstruction. Due to the layover phenomenon, surveying in high mountain areas remains a difficult task. Consequently, it is meaningful to carry out the research on 3D mountain reconstruction using the airborne array TomoSAR. However, the original TomoSAR mountain point cloud faces the problem of elevation ambiguity. Furthermore, for mountains with complex terrain, the points located in different elevation periods may intersect. This phenomenon increases the difficulty of solving the problem. In this paper, a novel elevation ambiguity resolution method is proposed. First, Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Gaussian Mixture Model (GMM) are combined for point cloud segmentation. The former ensures coarse segmentation based on density, and the latter allows fine segmentation of the abnormal categories caused by intersection. Subsequently, the segmentation results are reorganized in the elevation direction to reconstruct all possible point clouds. Finally, the real point cloud can be extracted automatically under the constraints of the boundary and elevation continuity. The performance of the proposed method is demonstrated by simulations and experiments. Based on the airborne array TomoSAR experiment in Leshan City, Sichuan Province, China in 2019, the 3D model of the surveyed mountain is presented. Moreover, three kinds of external data are applied to fully verify the validity of this method
    corecore