27 research outputs found

    Identification of Metabolites and Metabolic Pathways Related to Treatment with Bufei Yishen Formula in a Rat COPD Model Using HPLC Q-TOF/MS

    Get PDF
    As a traditional Chinese medicine, Bufei Yishen Formula (BYF) is widely used in China as an effective treatment for chronic obstructive pulmonary disease (COPD). Because of the component complexity and multiple activities of Chinese herbs, the mechanism whereby BYF affects COPD is not yet fully understood. Herein, pulmonary function experiments and histomorphological assessments were used to evaluate the curative effect of BYF, which showed that BYF had an effect on COPD. Additionally, a high performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC QTOF/MS) metabonomics method was used to analyze the mechanism of the actions of BYF on rats with COPD induced by a combination of bacteria and smoking. Partial least squares discriminate analysis (PLS-DA) was used to screen biomarkers related to BYF treatment. Candidate biomarkers were selected and pathways analysis of these metabolites showed that three types of metabolic pathways (unsaturated fatty acid metabolism-related pathways, phenylalanine metabolism-related pathways, and phospholipid metabolism-related pathways) were associated with BYF treatment. Importantly, arachidonic acid and related metabolic pathways might be useful targets for novel COPD therapies

    Bufei Yishen Granules Combined with Acupoint Sticking Therapy Suppress Inflammation in Chronic Obstructive Pulmonary Disease Rats: Via JNK/p38 Signaling Pathway

    Get PDF
    The present study was initiated to explore the mechanism of the effects of Bufei Yishen granules combined with acupoint sticking therapy (Shu-Fei Tie) on inflammation regulated by c-Jun N-terminal kinase (JNK) and p38 MAPK signaling in COPD rats. Seventy-two rats were divided into healthy control (Control), Model, Bufei Yishen (BY), acupoint sticking (AS), Bufei Yishen + acupoint sticking (BY + AS), and aminophylline (APL) groups (n=12 each). COPD rats were exposed to cigarette smoke and bacteria and were given the various treatments from weeks 9 through 20; all animals were sacrificed at the end of week 20. MCP-1, IL-2, IL-6, and IL-10 concentrations in BALF and lung tissue as well as JNK and p38 mRNA and protein levels in lung were measured. The results showed that all the four treatment protocols (BY, AS, BY + AS, and APL) markedly reduced the concentrations of IL-2, IL-6, and MCP-1 and levels of JNK and p38 MAPK mRNA, and the effects of Bufei Yishen granules combined with acupoint sticking therapy were better than acupoint sticking therapy only and aminophylline. In conclusion, the favorable effect of Bufei Yishen granules combined with Shu-Fei Tie may be due to decreased inflammation through regulation of the JNK/p38 signaling pathways

    Integrating Transcriptomics, Proteomics, and Metabolomics Profiling with System Pharmacology for the Delineation of Long-Term Therapeutic Mechanisms of Bufei Jianpi Formula in Treating COPD

    No full text
    In previous work, we identified 145 active compounds from Bufei Jianpi formula (BJF) by system pharmacology and found that BJF showed short-term effect on chronic obstructive pulmonary disease (COPD) rats. Here, we applied the transcriptomic, proteomic, and metabolomics approaches to illustrate the long-term anti-COPD action and its system mechanism of BJF. BJF has obvious anti-COPD effect through decreasing inflammatory cytokines level, preventing protease-antiprotease imbalance and collagen deposition on week 32 by continuous oral administration to rats from weeks 9 to 20. Subsequently, applying the transcriptomic, proteomic, and metabolomics techniques, we detected a number of regulated genes, proteins, and metabolites, mainly related to antioxidant activity, focal adhesion, or lipid metabolism, in lung tissues of COPD and BJF-treated rats. Afterwards, we integrated system pharmacology target, transcript, protein, and metabolite data sets and found that many genes, proteins, and metabolites in rats BJF-treated group and the target proteins of BJF were mainly attributed to lipid metabolism, inflammatory response, oxidative stress, and focal adhesion. Taken together, BJF displays long-term anti-COPD effect probably by system regulation of the lipid metabolism, inflammatory response pathways oxidative stress, and focal adhesion

    AcdS gene of Bacillus cereus enhances salt tolerance of seedlings in tobacco (Nicotiana tabacum L.)

    No full text
    AbstractPrevious studies show that 1-aminocyclopropane-1-carboxylate (ACC) deaminase can facilitate the growth and stress tolerance of hosts by reducing ethylene levels. In this study, the acdS gene encoding ACC deaminase from Bacillus cereus (HK012) was cloned and transformed into tobacco (Nicotiana tabacum L.) by the leaf disc method using Agrobacterium. Molecular detection and physiological analysis of the transgenic tobacco plants were performed. Our results showed the acdS gene was integrated into the tobacco genome and fluorescence microscopy showed that the fusion protein was located on the cell membrane of tobacco root. Compared with control, the transgenic plants showed increases in plant height, root length, dry weight, fresh weight and chlorophyll content; and significant increases in the concentration of proline of 55.15% and 42.7% under salt stress conditions (150 mmol L−1 and 300 mmol L−1 NaCl, respectively). The superoxide dismutase, peroxidase, catalase and ACC deaminase activities of transgenic tobacco were higher than those of control tobacco at 150 and 300 mmol L−1 salt concentrations. Transgenic tobacco seedlings expressing the acdS gene of B. cereus HK012 showed higher salt tolerance than the control plants. The obtained results suggest that the acdS gene of B. cereus can be used to promote salt tolerance in glycophytes by using biotechnology strategies

    A Chinese Herbal Formula Ameliorates Pulmonary Fibrosis by Inhibiting Oxidative Stress via Upregulating Nrf2

    No full text
    This study aimed to explore the protective effects of a Chinese herbal formula, Jinshui Huanxian formula (JHF), on experimental pulmonary fibrosis and its underlying mechanisms. After being treated with single dose of bleomycin (5 mg/kg) intratracheally, rats were orally administered with JHF and pirfenidone from day 1 to 42, then sacrificed at 7, 14, 28, or 42 days post-bleomycin instillation. JHF ameliorated bleomycin-induced pathological changes, collagen deposition in the rat lung and recovered pulmonary function at different days post-bleomycin instillation. In lungs of JHF-treated rats, the levels of total superoxide dismutase, catalase and glutathione were higher, and myeloperoxidase and methane dicarboxylic aldehyde were lower than those in vehicle-treated rats, respectively. Additionally, JHF inhibited the expression of NADPH oxidase 4 (NOX4) and increased the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) in lung tissues. In vitro, JHF and ruscogenin, a compound of Ophiopogonis Radix contained in JHF, significantly inhibited transforming growth factor β1 (TGF-β1)-induced differentiation of fibroblasts. Furthermore, JHF markedly decreased the level of reactive oxygen species in TGF-β1-induced fibroblast. In line with this, upregulation of NAD(P)H: quinone oxidoreductase 1 and heme oxygenase 1, and downregulation of NOX4 were found in JHF-treated fibroblast induced by TGF-β1. While on the other hand, Nrf2 siRNA could suppress the JHF-mediated inhibition effect on alpha-smooth muscle actin (ι-SMA), and FN1 expression induced by TGF-β1 in fibroblasts. These results indicated that JHF performed remarkably therapeutic and long-term effects on pulmonary fibrosis in rat and suppressed the differentiation of fibroblast into myofibroblast through reducing the oxidative response by upregulating Nrf2 signaling. It might provide a new potential natural drug for the treatment of pulmonary fibrosis

    Discovery of the Active Compounds of the Ethyl Acetate Extract Site of <i>Ardisia japonica</i> (Thunb.) Blume for the Treatment of Acute Lung Injury

    No full text
    The objective of this study was to identify and evaluate the pharmacodynamic constituents of Ardisiae Japonicae Herba (AJH) for the treatment of acute lung injury (ALI). To fully analyze the chemical contents of various extraction solvents (petroleum ether site (PE), ethyl acetate site (EA), n-butanol site (NB), and water site (WS)) of AJH, the UPLC–Orbitrap Fusion–MS technique was employed. Subsequently, the anti-inflammatory properties of the four extracted components of AJH were assessed using the lipopolysaccharide (LPS)-induced MH-S cellular inflammation model. The parts that exhibited anti-inflammatory activity were identified. Additionally, a technique was developed to measure the levels of specific chemical constituents in the anti-inflammatory components of AJH. The correlation between the “anti-inflammatory activity” and the constituents was analyzed, enabling the identification of a group of pharmacodynamic components with anti-inflammatory properties. ALI model rats were created using the tracheal drip LPS technique. The pharmacodynamic indices were evaluated for the anti-inflammatory active portions of AJH. The research revealed that the PE, EA, NB, and WS extracts of AJH included 215, 289, 128, and 69 unique chemical components, respectively. Additionally, 528 chemical components were discovered after removing duplicate values from the data. The EA exhibited significant anti-inflammatory activity in the cellular assay. A further analysis was conducted to determine the correlation between anti-inflammatory activity and components. Seventeen components, such as caryophyllene oxide, bergenin, and gallic acid, were identified as potential pharmacodynamic components with anti-inflammatory activity. The pharmacodynamic findings demonstrated that the intermediate and high doses of the EA extract from AJH exhibited a more pronounced effect in enhancing lung function, blood counts, and lung histology in a way that depended on the dosage. To summarize, when considering the findings from the previous study on the chemical properties of AJH, it was determined that the EA contained a group of 13 constituents that primarily contributed to its pharmacodynamic effects against ALI. The constituents include bergenin, quercetin, epigallocatechingallate, and others

    Integrated bioinformatics analysis for the identification of idiopathic pulmonary fibrosis–related genes and potential therapeutic drugs

    No full text
    Abstract Objective The pathogenesis of idiopathic pulmonary fibrosis (IPF) remains unclear. We sought to identify IPF-related genes that may participate in the pathogenesis and predict potential targeted traditional Chinese medicines (TCMs). Methods Using IPF gene-expression data, Wilcoxon rank-sum tests were performed to identify differentially expressed genes (DEGs). Protein–protein interaction (PPI) networks, hub genes, and competitive endogenous RNA (ceRNA) networks were constructed or identified by Cytoscape. Quantitative polymerase chain reaction (qPCR) experiments in TGF-β1-induced human fetal lung (HFL) fibroblast cells and a pulmonary fibrosis mouse model verified gene reliability. The SymMap database predicted potential TCMs targeting IPF. The reliability of TCMs was verified in TGF-β1-induced MRC-5 cells. Materials Multiple gene-expression profile data of normal lung and IPF tissues were downloaded from the Gene Expression Omnibus database. HFL fibroblast cells and MRC-5 cells were purchased from Wuhan Procell Life Science and Technology Co., Ltd. (Wuhan, China). C57BL/12 mice were purchased from Beijing Vital River Laboratory Animal Technology Co., Ltd. (Beijing, China). Results In datasets GSE134692 and GSE15197, DEGs were identified using Wilcoxon rank-sum tests (both p < 0.05). Among them, 1885 DEGs were commonly identified, and 87% (1640 genes) had identical dysregulation directions (binomial test, p < 1.00E-16). A PPI network with 1623 nodes and 8159 edges was constructed, and 18 hub genes were identified using the Analyze Network plugin in Cytoscape. Of 18 genes, CAV1, PECAM1, BMP4, VEGFA, FYN, SPP1, and COL1A1 were further validated in the GeneCards database and independent dataset GSE24206. ceRNA networks of VEGFA, SPP1, and COL1A1 were constructed. The genes were verified by qPCR in samples of TGF-β1-induced HFL fibroblast cells and pulmonary fibrosis mice. Finally, Sea Buckthorn and Gnaphalium Affine were predicted as potential TCMs for IPF. The TCMs were verified by qPCR in TGF-β1-induced MRC-5 cells. Conclusion This analysis strategy may be useful for elucidating novel mechanisms underlying IPF at the transcriptome level. The identified hub genes may play key roles in IPF pathogenesis and therapy

    Identification of Metabolites and Metabolic Pathways Related to Treatment with Bufei Yishen Formula in a Rat COPD Model Using HPLC Q-TOF/MS

    No full text
    As a traditional Chinese medicine, Bufei Yishen Formula (BYF) is widely used in China as an effective treatment for chronic obstructive pulmonary disease (COPD). Because of the component complexity and multiple activities of Chinese herbs, the mechanism whereby BYF affects COPD is not yet fully understood. Herein, pulmonary function experiments and histomorphological assessments were used to evaluate the curative effect of BYF, which showed that BYF had an effect on COPD. Additionally, a high performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC QTOF/MS) metabonomics method was used to analyze the mechanism of the actions of BYF on rats with COPD induced by a combination of bacteria and smoking. Partial least squares discriminate analysis (PLS-DA) was used to screen biomarkers related to BYF treatment. Candidate biomarkers were selected and pathways analysis of these metabolites showed that three types of metabolic pathways (unsaturated fatty acid metabolism-related pathways, phenylalanine metabolism-related pathways, and phospholipid metabolism-related pathways) were associated with BYF treatment. Importantly, arachidonic acid and related metabolic pathways might be useful targets for novel COPD therapies
    corecore