49 research outputs found

    An Alternative to Variance: Gini Deviation for Risk-averse Policy Gradient

    Full text link
    Restricting the variance of a policy's return is a popular choice in risk-averse Reinforcement Learning (RL) due to its clear mathematical definition and easy interpretability. Traditional methods directly restrict the total return variance. Recent methods restrict the per-step reward variance as a proxy. We thoroughly examine the limitations of these variance-based methods, such as sensitivity to numerical scale and hindering of policy learning, and propose to use an alternative risk measure, Gini deviation, as a substitute. We study various properties of this new risk measure and derive a policy gradient algorithm to minimize it. Empirical evaluation in domains where risk-aversion can be clearly defined, shows that our algorithm can mitigate the limitations of variance-based risk measures and achieves high return with low risk in terms of variance and Gini deviation when others fail to learn a reasonable policy

    Heavier precipitation in response to longer-lasting tropical cyclones and rapid urbanization over the Yangtze River Delta of eastern China

    Get PDF
    Precipitation induced by tropical cyclones (TCs) over cities is associated with both TC duration and urbanization; however, observational evidence of the impacts of TC duration and urbanization on precipitation in megalopolises is limited. In this study, the Yangtze River Delta (YRD) of eastern China is taken as a typical region because this region has been experiencing both rapid urbanization processes and frequent TC attacks. During 1979–2018, we find reduced translation speed and increased meandering of TCs over the YRD, resulting in increased TC duration and the proportion of TC stalling in this region. The correlation between TC duration and TC-induced precipitation amount is significant across the YRD region but is relatively weak in areas with faster urbanization expansion rates. Long-term increases in TC-induced precipitation are found in both rural and urban areas but are larger for urban areas. Urbanization plays an important role in enhancing TC-induced precipitation over urban areas of the YRD region. Areas with faster urbanization expansion rates and longer TC durations have larger TC-induced precipitation, suggesting that urban expansion and TC duration jointly amplify TC-induced precipitation. Our findings suggest that urban planners, in areas potentially affected by TCs, should consider adaptation measures to mitigate the impacts of urban rainstorms amplified by the combined effects of TCs and urbanization

    Attribution of the record-breaking extreme precipitation events in July 2021 over central and eastern China to anthropogenic climate change

    Get PDF
    In July 2021, Typhoon In-Fa produced record-breaking extreme precipitation events (hereafter referred to as the 2021 EPEs) in central and eastern China, and caused serious socioeconomic losses and casualties. However, it is still unknown whether the 2021 EPEs can be attributed to anthropogenic climate change (ACC) and how the occurrence probabilities of precipitation events of a similar magnitude might evolve in the future. The 2021 EPEs in central (eastern) China occurred in the context of no linear trend (a significantly increasing trend at a rate of 4.44%/decade) in the region-averaged Rx5day (summer maximum 5-day accumulated precipitation) percentage precipitation anomaly (PPA), indicating that global warming might have no impact on the 2021 EPE in central China but might have impacted the 2021 EPE in eastern China by increasing the long-term trend of EPEs. Using the scaled generalized extreme value distribution, we detected a slightly negative (significantly positive) association of the Rx5day PPA time series in central (eastern) China with the global mean temperature anomaly, suggesting that global warming might have no (a detectable) contribution to the changes in occurrence probability of precipitation extremes like the 2021 EPEs in central (eastern) China. Historical attributions (1961–2020) showed that the likelihood of the 2021 EPE in central/eastern China decreased/increased by approximately +47% (−23% to +89%)/+55% (−45% to +201%) due to ACC. By the end of the 21st century, the likelihood of precipitation extremes similar to the 2021 EPE in central/eastern China under SSP585 is 14 (9–19)/15 (9–20) times higher than under historical climate conditions

    MiR-124 Inhibits Growth and Enhances Radiation-Induced Apoptosis in Non-Small Cell Lung Cancer by Inhibiting STAT3

    No full text
    Background/Aims: A growing body of evidence indicates that the abnormal expression of microRNAs (miRNAs) play an important role in sensitizing the cellular response to ionizing radiation (IR). The aim of this study was to investigate whether the expression of miR-124 correlated with radiosensitivity in the context of non-small-cell lung carcinoma (NSCLC). Methods: Quantitative reverse transcription polymerase chain reaction (RT-PCR) was used to quantify miR-124 expression in NSCLC tissues and cell lines. The role of miR-124 in NSCLC proliferation and radiosensitivity was analyzed using CCK-8 and flow cytometry apoptosis assays. Luciferase activity assays, RT-PCR, and Western blot assays were performed to confirm the target gene of miR-124. Results: In this study, we found that miR-124 was downregulated both in clinical NSCLC samples and in cell lines. miR-124 inhibited the proliferation of NSCLC cells and enhanced the apoptosis of NSCLC cells exposed to ionizing radiation. We identified signal transducer and activator of transcription 3 (STAT3) as a direct target of miR-124 by using target prediction algorithms and luciferase assays. Overexpression of STAT3 in A549 cell lines restored the enhanced radiosensitivity induced by miR-124. Conclusion: Taking these observations into consideration, we illustrated that miR-124 is a potential target for enhancing the radiosensitivity of NSCLC cells by targeting STAT3

    Effect of amblyopia treatment on macular microvasculature in children with anisometropic amblyopia using optical coherence tomographic angiography

    No full text
    Abstract To measure the retinal microvascular density in patients with anisometropic amblyopia using optical coherence tomographic angiography (OCTA) and to evaluate the effects of successful amblyopia treatment on microvasculature in retina. 59 children (5–12 years old) including 22 newly diagnosed unilateral anisometropic amblyopia, 16 recovered unilateral anisometropic amblyopia, and 21 control children were imaged with OCTA using 6 × 6-mm macular scan pattern. Vessel densities of the superficial capillary plexus (SCP), the deep capillary plexus (DCP), and the overall macular thickness were acquired and compared among the three groups. After adjustment for axial length, the amblyopia group showed lower macular vessel density in the SCP (P = 0.005) and in the DCP (P = 0.004) compared with that of the control group. However, for the recovered amblyopia group, no difference of vessel density was found when compared with the control group in both the SCP (P = 0.548) and the DCP (P = 0.124). No difference of the mean macular thickness was found among three groups (P ≥ 0.15). Children with anisometropic amblyopia have reduced macular vessel density in OCTA, while no difference of macular vessel density was found between the recovered amblyopic and control eyes. Macular thickness showed no difference in anisometropic amblyopia and remained unchanged after amblyopic treatment

    A Functional Variant at the miR-214 Binding Site in the Methylenetetrahydrofolatereductase Gene Alters Susceptibility to Gastric Cancer in a Chinese Han Population

    No full text
    Background and Aims: Single nucleotide polymorphisms in miRNA binding sites, which are located in mRNA 3' untranslated regions (3'-UTRs), were recently found to influence microRNA-target interactions. Specifically, such polymorphisms can modulatebinding affinity or create or destroy miRNA-binding sites; such variants have also been found to be associated with cancer risk. In this study, we explored the effect of a functional variant at the miR-214 binding site in the methylenetetrahydrofolate reductase gene (rs114673809) on gastric cancer (GC) risk in a hospital-based case-control study in a Chinese Han population. Methods and Results: We genotyped the rs114673809 polymorphism in 345 gastric cancer patients and 376 cancer-free controls using the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) technique. The functions of rs114673809 were investigated using a luciferase activity assay and validated by immunoblotting. We found that participants carrying the rs114673809 AA genotype or A allele had a significantly increased risk of gastric cancer (OR = 1.667, 95% CI = 1.044-2.660, P = 0.034; OR = 1.261, 95% CI = 1.017-1.563, P = 0.037, respectively) compared to those carrying the GG genotype and G allele. In addition, rs114673809 modified the binding of hsa-miR-214 to MTHFR as well as MTHFR protein levels in gastric cancer patients. Conclusion: Our data suggested that rs114673809, which is located at the miR-214 binding site in the 3'-UTR of MTHFR, may play an important role in the development of gastric cancer in a Chinese Han population

    High-Q Mid-Infrared Chalcogenide Glass Resonators For Chemical Sensing

    No full text
    We fabricated and characterized chalcogenide glass on CaF2 resonators with a record intrinsic quality factor of 6 × 105, and applied these devices to demonstrate cavity enhanced chemical sensing near 5.2 μm wavelength
    corecore