20,556 research outputs found

    Landau Fermi Liquid Picture of Spin Density Functional Theory: Strutinsky Approach to Quantum Dots

    Full text link
    We analyze the ground state energy and spin of quantum dots obtained from spin density functional theory (SDFT) calculations. First, we introduce a Strutinsky-type approximation, in which quantum interference is treated as a correction to a smooth Thomas-Fermi description. For large irregular dots, we find that the second-order Strutinsky expressions have an accuracy of about 5 percent compared to the full SDFT and capture all the qualitative features. Second, we perform a random matrix theory/random plane wave analysis of the Strutinsky SDFT expressions. The results are statistically similar to the SDFT quantum dot statistics. Finally, we note that the second-order Strutinsky approximation provides, in essence, a Landau Fermi liquid picture of spin density functional theory. For instance, the leading term in the spin channel is simply the familiar exchange constant. A direct comparison between SDFT and the perturbation theory derived ``universal Hamiltonian'' is thus made possible.Comment: Submitted to Physical Review

    Electron-Electron Interactions in Isolated and Realistic Quantum Dots: A Density Functional Theory Study

    Full text link
    We use Kohn-Sham spin-density-functional theory to study the statistics of ground-state spin and the spacing between conductance peaks in the Coulomb blockade regime for both 2D isolated and realistic quantum dots. We make a systematic investigation of the effects of electron-electron interaction strength and electron number on both the peak spacing and spin distributions. A direct comparison between the distributions from isolated and realistic dots shows that, despite the difference in the boundary conditions and confining potential, the statistical properties are qualitatively the same. Strong even/odd pairing in the peak spacing distribution is observed only in the weak e-e interaction regime and vanishes for moderate interactions. The probability of high spin ground states increases for stronger e-e interaction and seems to saturate around rs4r_s \sim 4. The saturated value is larger than previous theoretical predictions. Both spin and conductance peak spacing distributions show substantial variation as the electron number increases, not saturating until N150N \sim 150. To interpret our numerical results, we analyze the spin distribution in the even NN case using a simple two-level model.Comment: 10 pages, 12 figures, submitted to Phys. Rev.

    Adaptive low rank and sparse decomposition of video using compressive sensing

    Full text link
    We address the problem of reconstructing and analyzing surveillance videos using compressive sensing. We develop a new method that performs video reconstruction by low rank and sparse decomposition adaptively. Background subtraction becomes part of the reconstruction. In our method, a background model is used in which the background is learned adaptively as the compressive measurements are processed. The adaptive method has low latency, and is more robust than previous methods. We will present experimental results to demonstrate the advantages of the proposed method.Comment: Accepted ICIP 201
    corecore