15,402 research outputs found

    Intersystem soft handover for converged DVB-H and UMTS networks

    Get PDF
    Digital video broadcasting for handhelds (DVB-H) is the standard for broadcasting Internet Protocol (IP) data services to mobile portable devices. To provide interactive services for DVB-H, the Universal Mobile Telecommunications System (UMTS) can be used as a terrestrial interaction channel for the unidirectional DVB-H network. The converged DVB-H and UMTS network can be used to address the congestion problems due to the limited multimedia channel accesses of the UMTS network. In the converged network, intersystem soft handover between DVB-H and UMTS is needed for an optimum radio resource allocation, which reduces network operation cost while providing the required quality of service. This paper deals with the intersystem soft handover between DVB-H and UMTS in such a converged network. The converged network structure is presented. A novel soft handover scheme is proposed and evaluated. After considering the network operation cost, the performance tradeoff between the network quality of service and the network operation cost for the intersystem soft handover in the converged network is modeled using a stochastic tree and analyzed using a numerical simulation. The results show that the proposed algorithm is feasible and has the potential to be used for implementation in the real environment

    The association of HBV core promoter double mutations (A1762T and G1764A) with viral load differs between HBeAg positive and anti-HBe positive individuals: A longitudinal analysis

    Get PDF
    Background/Aims: Although there have been a few reports regarding the effect of basal core promoter (BCP) double mutations (A1762T and G1764A) on hepatitis B viral loads, the association remains uncertain. We aim to determine the association after controlling for HBeAg - a strong confounding factor.Methods: We selected randomly 190 individuals from a Chinese cohort of 2258 subjects for cross-sectional analysis and 56 of the 190 for longitudinal analysis of viral loads.Results: In multivariable analysis of the cross-sectional data, BCP double mutations are significantly associated with lower viral loads in HBeAg positive subjects but no difference was found in anti-HBe positive subjects. Triple mutations at nucleotide (nt) 1753, 1762 and 1764 and mutations between nt 1809 and 1817, precore stop mutation (nt 1896) and genotype are not associated with viral loads in either HBeAg or anti-HBe positive subjects. Analysis of the longitudinal data yielded similar results to the cross-sectional data. Viral loads differ significantly between individuals infected with wild-type and BCP double mutations prior to HBeAg seroconversion but this difference is lost after seroconversion.Conclusions: BCP double mutations are associated with lower viral loads in HBeAg positive individuals but have no effect on the viral loads of anti-HBe positive individuals. (C) 2008 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved

    Measurements of OVOC fluxes by eddy covariance using a proton-transfer-reaction mass spectrometer – method development at a coastal site

    Get PDF
    We present here vertical fluxes of oxygenated volatile organic compounds (OVOCs) measured with eddy covariance (EC) during the period of March to July 2012 near the southwest coast of the United Kingdom. The performance of the proton-transfer-reaction mass spectrometer (PTR-MS) for flux measurement is characterized, with additional considerations given to the homogeneity and stationarity assumptions required by EC. Observed mixing ratios and fluxes of OVOCs (specifically methanol, acetaldehyde, and acetone) vary significantly with time of day and wind direction. Higher mixing ratios and fluxes of acetaldehyde and acetone are found in the daytime and from the direction of a forested park, most likely due to light-driven emissions from terrestrial plants. Methanol mixing ratio and flux do not demonstrate consistent diel variability, suggesting sources in addition to plants. We estimate air-sea exchange and photochemical rates of these compounds, which are compared to measured vertical fluxes. For acetaldehyde, the mean (1 sigma) mixing ratio of 0.13 (0.02) ppb at night may be maintained by oceanic emission, while photochemical destruction out-paces production during the day. Air-sea exchange and photochemistry are probably net sinks of methanol and acetone in this region. Their nighttime mixing ratios of 0.46 (0.20) and 0.39 (0.08) ppb appear to be affected more by terrestrial emissions and long-distance transport, respectively

    Vertical fluxes and atmospheric cycling of methanol, acetaldehyde, and acetone in a coastal environment

    Get PDF
    We present here vertical fluxes of methanol, acetaldehyde, and acetone measured directly with eddy covariance (EC) during March to July 2012 near the southwest coast of the UK. The performance of the proton-transfer reaction mass spectrometer (PTR-MS) for flux measurement is characterized, with additional considerations given to the homogeneity and stationarity assumptions required by EC. Concentrations and fluxes of these compounds vary significantly with time of day and wind direction. Higher values of acetaldehyde and acetone are usually observed in the daytime and from the direction of a forested park, most likely due to light-driven emissions from terrestrial plants. Methanol concentration and flux do not demonstrate clear diel variability, suggesting sources in addition to plants. We estimate air–sea exchange and photochemical rates of these compounds, which are compared to measured vertical fluxes. For acetaldehyde, the mean (1�) concentration of 0.13 (0.02) ppb at night may be maintained by oceanic emission, while photochemical destruction outpaces production during the day. Air-sea exchange and photochemistry are probably net sinks of methanol and acetone in this region. Their nighttime concentrations of 0.46 (0.20) and 0.39 (0.08) ppb appear to be affected more by terrestrial emissions and long distance transport, respectively

    Wave attenuation at a salt marsh margin: A case study of an exposed coast on the Yangtze estuary

    Get PDF
    To quantify wave attenuation by (introduced) Spartina alterniflora vegetation at an exposed macrotidal coast in the Yangtze Estuary, China, wave parameters and water depth were measured during 13 consecutive tides at nine locations ranging from 10 m seaward to 50 m landward of the low marsh edge. During this period, the incident wave height ranged from <0.1 to 1.5 m, the maximum of which is much higher than observed in other marsh areas around the world. Our measurements and calculations showed that the wave attenuation rate per unit distance was 1 to 2 magnitudes higher over the marsh than over an adjacent mudflat. Although the elevation gradient of the marsh margin was significantly higher than that of the adjacent mudflat, more than 80% of wave attenuation was ascribed to the presence of vegetation, suggesting that shoaling effects were of minor importance. On average, waves reaching the marsh were eliminated over a distance of similar to 80 m, although a marsh distance of >= 100 m was needed before the maximum height waves were fully attenuated during high tides. These attenuation distances were longer than those previously found in American salt marshes, mainly due to the macrotidal and exposed conditions at the present site. The ratio of water depth to plant height showed an inverse correlation with wave attenuation rate, indicating that plant height is a crucial factor determining the efficiency of wave attenuation. Consequently, the tall shoots of the introduced S. alterniflora makes this species much more efficient at attenuating waves than the shorter, native pioneer species in the Yangtze Estuary, and should therefore be considered as a factor in coastal management during the present era of sea-level rise and global change. We also found that wave attenuation across the salt marsh can be predicted using published models when a suitable coefficient is incorporated to account for drag, which varies in place and time due to differences in plant characteristics and abiotic conditions (i.e., bed gradient, initial water depth, and wave action).

    Temporal and spatial trends in aerosols near the English Channel – An air quality success story?

    Get PDF
    We present a detailed analysis of long-term aerosol measurements from four sun photometer sites (from west to east: Plymouth, Chilbolton, Dunkirk, Oostende) and four Department for Environment, Food & Rural Affairs surface sites (from west to east: Plymouth, Southampton, Portsmouth, Eastbourne) near the English Channel. From the early 2000s to about 2016, annual mean Aerosol Optical Depth (AOD) from all sun photometer sites decreased by an overall average of 23% decade-1 (range of 15–28% decade-1). From 2010 to 2017, annual mean concentration of particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) from all the surface sites decreased by an overall average of 44% decade-1 (range of 7–64% decade-1). Seasonally, the highest aerosol loading is generally found around the springtime, and this maximum has been decreasing much faster over recent years than during the other seasons. This is driven by the interaction between the seasonal weather patterns (e.g. reduced westerly flow and drier weather in the spring) and the main emission sources being predominantly from the European Continent. We find clear spatial gradients in the aerosol loading as well as aerosol composition. From west to east along the English Channel, PM2.5 concentration increases with a mean gradient of about 0.007 μg m-3 km-1. At the westernmost site Plymouth, sea spray is estimated on average to account for 16% of the AOD and 13% of the particulate matter with aerodynamic diameter less than 10 μm (PM10). The importance of sea spray is reduced by at least a factor of two at the more eastern sites. The long-term decrease in aerosol loading along the English Channel appears to be more strongly driven by the reduced anthropogenic emissions, rather than by changes in the large-scale circulation such as the North Atlantic Oscillation. Clean ups in road vehicles and ship emissions, however, do not appear to be strong drivers for the long-term trends in aerosol loading at these coastal sites

    Temporal and spatial trends in aerosols near the English Channel – An air quality success story?

    Get PDF
    We present a detailed analysis of long-term aerosol measurements from four sun photometer sites (from west to east: Plymouth, Chilbolton, Dunkirk, Oostende) and four Department for Environment, Food & Rural Affairs surface sites (from west to east: Plymouth, Southampton, Portsmouth, Eastbourne) near the English Channel. From the early 2000s to about 2016, annual mean Aerosol Optical Depth (AOD) from all sun photometer sites decreased by an overall average of 23% decade-1 (range of 15–28% decade-1). From 2010 to 2017, annual mean concentration of particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) from all the surface sites decreased by an overall average of 44% decade-1 (range of 7–64% decade-1). Seasonally, the highest aerosol loading is generally found around the springtime, and this maximum has been decreasing much faster over recent years than during the other seasons. This is driven by the interaction between the seasonal weather patterns (e.g. reduced westerly flow and drier weather in the spring) and the main emission sources being predominantly from the European Continent. We find clear spatial gradients in the aerosol loading as well as aerosol composition. From west to east along the English Channel, PM2.5 concentration increases with a mean gradient of about 0.007 μg m-3 km-1. At the westernmost site Plymouth, sea spray is estimated on average to account for 16% of the AOD and 13% of the particulate matter with aerodynamic diameter less than 10 μm (PM10). The importance of sea spray is reduced by at least a factor of two at the more eastern sites. The long-term decrease in aerosol loading along the English Channel appears to be more strongly driven by the reduced anthropogenic emissions, rather than by changes in the large-scale circulation such as the North Atlantic Oscillation. Clean ups in road vehicles and ship emissions, however, do not appear to be strong drivers for the long-term trends in aerosol loading at these coastal sites
    corecore