37 research outputs found
Use of anchorchip-time-of-flight spectrometry technology to screen tumor biomarker proteins in serum for small cell lung cancer
<p>Abstract</p> <p>Background</p> <p>The purpose of this study is to discover potential biomarkers in serum for the detection of small cell lung cancer (SCLC).</p> <p>Methods</p> <p>74 serum samples including 30 from SCLC patients and 44 from healthy controls were analyzed using ClinProt system combined with matrix-assisted laser desorption/ionization time-of-flight masss spectrometry (MALDI-TOF-MS). ClinProt software and genetic algorithm analysis selected a panel of serum markers that most efficiently predicted which patients had SCLC.</p> <p>Results</p> <p>The diagnostic pattern combined with 5 potential biomarkers could differentiate SCLC patients from healthy persons, with a sensitivity of 90%, specificity of 97.73%. Remarkably, 88.89% of stage I/II patients were accurately assigned to SCLC.</p> <p>Conclusions</p> <p>Anchorchip-time-of-flight spectrometry technology will provide a highly accurate approach for discovering new biomarkers for the detection of SCLC.</p
Upregulation of desmoglein 2 and its clinical value in lung adenocarcinoma: a comprehensive analysis by multiple bioinformatics methods
Background Desmoglein-2 (DSG2), a desmosomal adhesion molecule, is found to be closely related to tumorigenesis in recent years. However, the clinical value of DSG2 in lung adenocarcinoma remains unclear. Methods Real-time reverse transcription-quantitative polymerase chain reaction (qRT-PCR) was utilized to detect the expression of DSG2 in 40 paired lung adenocarcinoma tissues and corresponding non-cancerous tissues. Data from The Cancer Genome Atlas (TCGA) and Oncomine datasets were also downloaded and analyzed. The correlation between DSG2 and clinicopathological features was investigated. The expression of DSG2 protein by immunohistochemical was also detected from tissue microarray and the Human Protein Atlas database. Integrated meta-analysis combining the three sources (qRT-PCR data, TCGA data and Oncomine datasets) was performed to evaluate the clinical value of DSG2. Univariate and multivariate Cox regression analyses were used to explore the prognostic value of DSG2. Then, co-expressed genes were calculated by Pearson correlation analysis. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to investigate the underlying molecular mechanism. The expression level in lung adenocarcinoma and prognostic significance of the top ten co-expressed genes were searched from Gene Expression Profiling Interactive Analysis (GEPIA) online database. Results DSG2 was highly expressed in lung adenocarcinoma tissues based on qRT-PCR, TCGA and Oncomine datasets. The protein expression of DSG2 was also higher in lung adenocarcinoma. According to qRT-PCR and TCGA, high DSG2 expression was positively associated with tumor size (p = 0.027, p = 0.001), lymph node metastasis (p = 0.014, p < 0.001) and TNM stage (p = 0.023, p < 0.001). The combined standard mean difference values of DSG2 expression based on the three sources were 1.30 (95% confidence interval (CI): 1.08–1.52) using random effect model. The sensitivity and specificity were 0.73 (95% CI [0.69–0.76]) and 0.96 (95% CI [0.89–0.98]). The area under the curve based on summarized receiver operating characteristic (SROC) curve was 0.79 (95% CI [0.75–0.82]). Survival analysis revealed that high DSG2 expression was associated with a short overall survival (hazard ratio [HR] = 1.638; 95% CI [1.214–2.209], p = 0.001) and poor progression-free survival (HR = 1.475; 95% CI [1.102–1.974], p < 0.001). A total of 215 co-expressed genes were identified. According to GO and KEGG analyses, these co-expressed genes may be involved in “cell division”, “cytosol”, “ATP binding” and “cell cycle”. Based on GEPIA database, seven of the top ten co-expressed genes were highly expressed in lung adenocarcinoma (DSC2, SLC2A1, ARNTL2, ERO1L, ECT2, ANLN and LAMC2). High expression of these genes had shorter overall survival. Conclusions The expression of DSG2 is related to the tumor size, lymph node metastasis and TNM stage. Also, DSG2 predicts poor prognosis in lung adenocarcinoma
Systematic review and meta-analysis of Endostar (rh-endostatin) combined with chemotherapy versus chemotherapy alone for treating advanced non-small cell lung cancer
BACKGROUND: Many studies have investigated the efficacy of Endostar combined with platinum-based doublet chemotherapy (PBDC) versus PBDC alone for treating advanced non-small cell lung cancer (NSCLC). This study is a meta-analysis of available evidence. METHODS: Fifteen studies reporting Endostar combined with PBDC versus PBDC alone for treating advanced NSCLC were reviewed. Pooled odds ratios and hazard ratio with 95% confidence intervals were calculated using either the fixed effects model or random effects model. RESULTS: The overall response rate (ORR) and disease control rate (DCR) of Endostar combined with PBDC for treating NSCLC were significantly higher than those of PBDC alone, with 14.7% and 13.5% improvement, respectively (P < 0.00001). In addition, the time to progression (TTP) and quality of life (QOL) were improved after the treatment of Endostar combined with PBDC (P < 0.00001). The main adverse effects found in this review were hematological reactions, hepatic toxicity, and nausea/vomiting. Endostar combined with PBDC had a similar incidence of adverse reactions compared with PBDC alone (P < 0.05). CONCLUSIONS: Endostar combined with PBDC was associated with higher RR, DCR, and TTP as well as superior QOL profiles compared with PBDC alone. Endostar combined with PBDC had a similar incidence of adverse reactions compared with PBDC alone
Systematic review and meta-analysis of Endostar (rh-endostatin) combined with chemotherapy versus chemotherapy alone for treating advanced non-small cell lung cancer
Abstract Background Many studies have investigated the efficacy of Endostar combined with platinum-based doublet chemotherapy (PBDC) versus PBDC alone for treating advanced non-small cell lung cancer (NSCLC). This study is a meta-analysis of available evidence. Methods Fifteen studies reporting Endostar combined with PBDC versus PBDC alone for treating advanced NSCLC were reviewed. Pooled odds ratios and hazard ratio with 95% confidence intervals were calculated using either the fixed effects model or random effects model. Results The overall response rate (ORR) and disease control rate (DCR) of Endostar combined with PBDC for treating NSCLC were significantly higher than those of PBDC alone, with 14.7% and 13.5% improvement, respectively (P P P Conclusions Endostar combined with PBDC was associated with higher RR, DCR, and TTP as well as superior QOL profiles compared with PBDC alone. Endostar combined with PBDC had a similar incidence of adverse reactions compared with PBDC alone.</p