140 research outputs found

    Study of Energy-Efficient Building Issues in Architectural Decoration

    Get PDF
    Creating green, energy-saving and environmentally friendly building products is the main theme of construction industry in order to achieve sustainable development. The study starts with innovations in energy-saving designs and energy-saving construction of a building’s interior decoration and other important aspects that use energy effectively, improve energy efficiency, as well as providing people with healthy, comfortable, natural and harmonious living and working environment, while realizing sustainable development of construction

    Scalable and controllable synthesis of atomic metal electrocatalysts assisted by an egg-box in alginate

    Get PDF
    Herein, a general strategy is developed to synthesize atomic metal catalysts using sustainable and earth-abundant sodium alginate (Na-Alg), a common seaweed extract, as a precursor. The “egg-box” structure in Na-Alg after ion-exchange with metal cations (Zn2+, Co2+, Ni2+, Cu2+, etc.) is the key to achieve a scalable and controllable synthesis of highly dispersed atomic metals. For instance, atomic Co, Ni and Cu have been successfully synthesized using this method. As a representative, the as-synthesized atomically dispersed Co on reduced graphene oxide (A-Co/r-GO) can reach a maximum metal loading of 3.6 wt%, showing outstanding catalytic activity and stability for the oxygen reduction reaction (ORR) with a half-wave potential (E1/2) of 0.842 V vs. RHE that is more positive than that of 20 wt% Pt/C (0.827 V vs. RHE) in alkaline solutions. The A-Co/r-GO catalyzed zinc-air batteries (ZABs) outperform Pt/C-based ZABs in the aspects of discharge voltage and specific zinc capacity, and can work robustly for more than 250 h with negligible voltage loss with refueling the Zn anode and KOH electrolyte periodically. This work opens up a new strategy for a general, practical and scalable synthesis of atomic metal catalysts at very low cost.No Full Tex

    A Sustainability Improvement Strategy of Interconnected Data Centers Based on Dispatching Potential of Electric Vehicle Charging Stations

    Get PDF
    With the rapid development of information technology, the electricity consumption of Internet Data Centers (IDCs) increases drastically, resulting in considerable carbon emissions that need to be reduced urgently. In addition to the introduction of Renewable Energy Sources (RES), the joint use of the spatial migration capacity of IDC workload and the temporal flexibility of the demand of Electric Vehicle Charging Stations (EVCSs) provides an important means to change the carbon footprint of the IDC. In this paper, a sustainability improvement strategy for the IDC carbon emission reduction was developed by coordinating the spatial-temporal dispatch flexibilities of the IDC workload and the EVCS demand. Based on the Minkowski sum algorithm, a generalized flexible load model of the EVCSs, considering traffic flow and Road Impedance (RI) was formulated. The case studies show that the proposed method can effectively increase the renewable energy consumption, reduce the overall carbon emissions of multi-IDCs, reduce the energy cost of the DCO, and utilize the EV dispatching potential. Discussions are also provided on the relationship between workload processing time delay and the renewable energy consumption rate

    QTL-seq analysis identified the genomic regions of plant height and days to heading in high-latitude rice

    Get PDF
    Introduction: Rice (Oryza sativa L.) is one of the most extensive crops in the world. China’s Heilongjiang Province is the northernmost rice-growing region in the world. However, rice cultivars suitable for growth in low-latitude regions may not mature normally due to their distinct climate and short frost-free period. It is necessary to precisely determine the frost-free period for each region to make the best use of the rice growth stage so as to ensure the maturity and yield of different rice cultivars in Heilongjiang Province. The time span of the heading stage is a key parameter for evaluating the adaptability of a rice cultivar to a specific rice-growing region. Given the above facts, it is of high importance to study the associated genes and sites controlling days to heading (DH) and plant height (PH) of rice in Heilongjiang Province. Bulked segregant analysis (BSA) combined with high-throughput sequencing can effectively exclude interferences from background genomic differences, making it suitable for analyzing the associated sites of complex agronomic traits in early generations.Methods: In this study, an F3 segregating population was obtained by crossing two main cultivars that are grown under different temperatures and day-light conditions in Heilongjiang. Two pools of extreme phenotypes were built for the DH and PH of the population. For SNP and InDel variants obtained from whole-genome resequencing in the pools, an association analysis was performed using the Euclidean distance (ED) algorithm and the SNP/InDel index algorithm.Results: The intersection of SNP and InDel regions associated with the phenotypes was considered to obtain the final associated sites. After excluding interferences from the cloned genes on chromosomes 2 and 7, a total length of 6.34 Mb on chromosomes 1, 3, and 10 and 3.16 Mb on chromosomes 1 and 10 were left associated with PH and DH, respectively. Then, we performed a gene annotation analysis for candidate genes in the remaining regions using multiple genome annotation databases. Our research provides basic data for subsequent gene mapping and cloning.Discussion: By mining more genetic loci associated with the days to heading and plant height of rice, we may provide abundant genetic resources for refined molecular breeding in Heilongjiang Province

    Vibration Control of the Boom System of Truck-Mounted Concrete Pump Based on Constant-Position Commandless Input Shaping Technique

    No full text
    Vibration of the boom system is inevitably caused by periodic disturbances, which are induced by pumping concrete. In this paper, an active control strategy of constant-position commandless input shaping technique is developed to suppress vibration. Based on a set of independent modal equations obtained by adopting modal approach, the double-impulse control with reverse direction is proposed, which is aiming at not only suppressing vibration, but also avoiding the variation of the equilibrium position of the boom system after active control action. And the characteristic of time-lag existing in real system is also taken into account for optimizing the control action. Experiments of vibration control were implemented on a 52-meter-long five-boom system to verify the proposed control strategy

    The aggregate and distributional impacts of residence policy relaxation

    No full text
    Government often designs strict policy to control the conversion rate from temporary to permanent residents. The residence status may directly affect individuals’ migration decisions and housing tenure choices. We present a dynamic spatial equilibrium framework to study the aggregate and distributional impacts of residence policy relaxation with a focus on the housing market. The DID approach treating the recent hukou policy reform in China as a shock reveals hukou policy relaxation causes housing prices in the treatment cities to be 4.9% higher than the unaffected cities. The impacts are stronger in cities where obtaining hukou was harder. The model is calibrated to the Chinese economy and predicts that hukou policy relaxation can bring a positive spillover effect to those unaffected cities’ welfare. If hukou policy reform were implemented in those super-mega Chinese cities, housing prices would grow by 2.3%, but the welfare gain equivalent to 3.1% of their current levels.Rongsheng Tang thanks for the financial support from the National Natural Science Foundation of China (No. 71803112). Rongjie Zhang thanks National Natural Science Foundation of China (No. 71874093 and 72174100) for financial support

    Human Simulated Intelligent Control with Double-Direction Dead-Zone Compensation for Joint Motion Control of a Large-Sized Boom System

    No full text
    Joint motion control of a 52-meter-long five-boom system driven by proportional hydraulic system is developed. It has been considered difficult due to strong nonlinearities and parametric uncertainties, the effect of which increases with the size of booms. A human simulated intelligent control scheme is developed to improve control performance by modifying control mode and control parameters. In addition, considering the negative effects caused by frequent and redundant reverse actions of the proportional valve, a double-direction compensation scheme is proposed to deal with the dead-zone nonlinearity of proportional valve. Sinusoidal motions are implemented on a real boom system. The results indicate that HSIC controller can improve control accuracy, and dead-zone nonlinearity is effectively compensated by proposed compensation scheme without introducing frequent reverse actions of proportional valve

    Multimodal multispectral optical endoscopic imaging for biomedical applications

    No full text
    Optical imaging is an emerging field of clinical diagnostics that can address the growing medical need for early cancer detection and diagnosis. Various human cancers are amenable to better prognosis and patient survival if found and treated during early disease onset. Besides providing wide-field, macroscopic diagnostic information similar to existing clinical imaging techniques, optical imaging modalities have the added advantage of microscopic, high resolution cellular-level imaging from in vivo tissues in real time. This comprehensive imaging approach to cancer detection and the possibility of performing an ‘optical biopsy’ without tissue removal has led to growing interest in the field with numerous techniques under investigation. Three optical techniques are discussed in this thesis, namely multispectral fluorescence imaging (MFI), hyperspectral reflectance imaging (HRI) and fluorescence confocal endomicroscopy (FCE). MFI and HRI are novel endoscopic imaging-based extensions of single point detection techniques, such as laser induced fluorescence spectroscopy and diffuse reflectance spectroscopy. This results in the acquisition of spectral data in an intuitive imaging format that allows for quantitative evaluation of tissue disease states. We demonstrate MFI and HRI on fluorophores, tissue phantoms and ex vivo tissues and present the results as an RGB colour image for more intuitive assessment. This follows dimensionality reduction of the acquired spectral data with a fixed-reference isomap diagnostic algorithm to extract only the most meaningful data parameters. FCE is a probe-based point imaging technique offering confocal detection in vivo with almost histology-grade images. We perform FCE imaging on chemotherapy-treated in vitro human ovarian cancer cells, ex vivo human cancer tissues and photosensitiser-treated in vivo murine tumours to show the enhanced detection capabilities of the technique. Finally, the three modalities are applied in combination to demonstrate an optical viewfinder approach as a possible minimally-invasive imaging method for early cancer detection and diagnosis.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • 

    corecore