29 research outputs found

    Ten Years of Mixing Cocktails: A Review of Combination Effects of Endocrine-Disrupting Chemicals

    Get PDF
    In the last 10 years, good evidence has become available to show that the combined effects of endocrine disruptors (EDs) belonging to the same category (e.g., estrogenic, antiandrogenic, or thyroid-disrupting agents) can be predicted by using dose addition. This is true for a variety of end points representing a wide range of organizational levels and biological complexity. Combinations of EDs are able to produce significant effect, even when each chemical is present at low doses that individually do not induce observable effects. However, comparatively little is known about mixtures composed of chemicals from different classes of EDs. Nevertheless, I argue that the accumulated evidence seriously undermines continuation with the customary chemical-by-chemical approach to risk assessment for EDs. Instead, we should seriously consider group-wise regulation of classes of EDs. Great care should be taken to define such classes by using suitable similarity criteria. Criteria should focus on common effects, rather than common mechanisms. In this review I also highlight research needs and identify the lack of information about exposure scenarios as a knowledge gap that seriously hampers progress with ED risk assessment. Future research should focus on investigating the effects of combinations of EDs from different categories, with considerable emphasis on elucidating mechanisms. This strategy may lead to better-defined criteria for grouping EDs for regulatory purposes. Also, steps should be taken to develop dedicated mixtures exposure assessment for EDs

    The only African wild tobacco, Nicotiana africana: Alkaloid content and the effect of herbivory

    Get PDF
    Herbivory in some Nicotiana species is known to induce alkaloid production. This study examined herbivore-induced defenses in the nornicotine-rich African tobacco N. africana, the only Nicotiana species indigenous to Africa. We tested the predictions that: 1) N. africana will have high constitutive levels of leaf, flower and nectar alkaloids; 2) leaf herbivory by the African bollworm Helicoverpa armigera will induce increased alkaloid levels in leaves, flowers and nectar; and 3) increased alkaloid concentrations in herbivore-damaged plants will negatively affect larval growth. We grew N. africana in large pots in a greenhouse and exposed flowering plants to densities of one, three and six fourth-instar larvae of H. armigera, for four days. Leaves, flowers and nectar were analyzed for nicotine, nornicotine and anabasine. The principal leaf alkaloid was nornicotine (mean: 28 ”g/g dry mass) followed by anabasine (4.9 ”g/g) and nicotine (0.6 ”g/g). Nornicotine was found in low quantities in the flowers, but no nicotine or anabasine were recorded. The nectar contained none of the alkaloids measured. Larval growth was reduced when leaves of flowering plants were exposed to six larvae. As predicted by the optimal defense theory, herbivory had a localized effect and caused an increase in nornicotine concentrations in both undamaged top leaves of herbivore damaged plants and herbivore damaged leaves exposed to one and three larvae. The nicotine concentration increased in damaged compared to undamaged middle leaves. The nornicotine concentration was lower in damaged leaves of plants exposed to six compared to three larvae, suggesting that N. africana rather invests in new growth as opposed to protecting older leaves under severe attack. The results indicate that the nornicotine-rich N. africana will be unattractive to herbivores and more so when damaged, but that potential pollinators will be unaffected because the nectar remains alkaloid-free even after herbivory
    corecore