164,661 research outputs found

    Towards A Background Independent Quantum Gravity

    Full text link
    We recapitulate the scheme of emergent gravity to highlight how a background independent quantum gravity can be defined by quantizing spacetime itself.Comment: 25 pages, 2 figures, Proceedings of 7th International Conference "Quantum Theory and Symmetries" (QTS-7) in Prague, Czech Republic, August, 201

    Emergent Geometry and Quantum Gravity

    Full text link
    We explain how quantum gravity can be defined by quantizing spacetime itself. A pinpoint is that the gravitational constant G = L_P^2 whose physical dimension is of (length)^2 in natural unit introduces a symplectic structure of spacetime which causes a noncommutative spacetime at the Planck scale L_P. The symplectic structure of spacetime M leads to an isomorphism between symplectic geometry (M, \omega) and Riemannian geometry (M, g) where the deformations of symplectic structure \omega in terms of electromagnetic fields F=dA are transformed into those of Riemannian metric g. This approach for quantum gravity allows a background independent formulation where spacetime as well as matter fields is equally emergent from a universal vacuum of quantum gravity which is thus dubbed as the quantum equivalence principle.Comment: Invited Review for Mod. Phys. Lett. A, 17 page

    Phonons in a Nanoparticle Mechanically Coupled to a Substrate

    Full text link
    The discrete nature of the vibrational modes of an isolated nanometer-scale solid dramatically modifies its low-energy electron and phonon dynamics from that of a bulk crystal. However, nanocrystals are usually coupled--even if only weakly--to an environment consisting of other nanocrystals, a support matrix, or a solid substrate, and this environmental interaction will modify the vibrational properties at low frequencies. In this paper we investigate the modification of the vibrational modes of an insulating spherical nanoparticle caused by a weak {\it mechanical} coupling to a semi-infinite substrate. The phonons of the bulk substrate act as a bath of harmonic oscillators, and the coupling to this reservoir shifts and broadens the nanoparticle's modes. The vibrational density of states in the nanoparticle is obtained by solving the Dyson equation for the phonon propagator, and we show that environmental interaction is especially important at low frequencies. As a probe of the modified phonon spectrum, we consider nonradiative energy relaxation of a localized electronic impurity state in the nanoparticle, for which good agreement with experiment is found.Comment: 10 pages, Revte
    • …
    corecore