2,021 research outputs found

    Angular dependence of resistivity in the superconducting state of NdFeAsO0.82_{0.82}F0.18_{0.18} single crystals

    Full text link
    We report the results of angle dependent resistivity of NdFeAsO0.82_{0.82}F0.18_{0.18} single crystals in the superconducting state. By doing the scaling of resistivity within the frame of the anisotropic Ginzburg-Landau theory, it is found that the angle dependent resistivity measured under different magnetic fields at a certain temperature can be collapsed onto one curve. As a scaling parameter, the anisotropy Γ\Gamma can be determined for different temperatures. It is found that Γ(T)\Gamma(T) increases slowly with decreasing temperature, varying from Γ≃\Gamma \simeq 5.48 at T=50 K to Γ≃\Gamma \simeq 6.24 at T=44 K. This temperature dependence can be understood within the picture of multi-band superconductivity.Comment: 7 pages, 4 figure

    Pressure Effect on the superconducting properties of LaO_{1-x}F_{x}FeAs(x=0.11) superconductor

    Full text link
    Diamagnetic susceptibility measurements under high hydrostatic pressure (up to 1.03 GPa) were carried out on the newly discovered Fe-based superconductor LaO_{1-x}F_{x}FeAs(x=0.11). The transition temperature T_c, defined as the point at the maximum slope of superconducting transition, was enhanced almost linearly by hydrostatic pressure, yielding a dT_c/dP of about 1.2 K/GPa. Differential diamagnetic susceptibility curves indicate that the underlying superconducting state is complicated. It is suggested that pressure plays an important role on pushing low T_c superconducting phase toward the main (optimal) superconducting phase.Comment: 7 pages, 4 figure

    Thermally activated energy and critical magnetic fields of SmFeAsO0.9_{0.9}F0.1_{0.1}

    Full text link
    Thermally activated flux flow and vortex glass transition of recently discovered SmFeAsO0.9_{0.9}F0.1_{0.1} superconductor are studied in magnetic fields up to 9.0 T. The thermally activated energy is analyzed in two analytic methods, of which one is conventional and generally used, while the other is closer to the theoretical description. The thermally activated energy values determined from both methods are discussed and compared. In addition, several critical magnetic fields determined from resistivity measurements are presented and discussed.Comment: Accepted by Superconductor Science and Technolog. 5 page, 4 figure

    Superconducting properties of SmO1-xFxFeAs wires with Tc = 52 K prepared by the powder-in-tube method

    Full text link
    We demonstrate that Ta sheathed SmO1-xFxFeAs wires were successfully fabricated by the powder-in-tube (PIT) method for the first time. Structural analysis by mean of x-ray diffraction shows that the main phase of SmO1-xFxFeAs was obtained by this synthesis method. The transition temperature of the SmO0.65F0.35FeAs wires was confirmed to be as high as 52 K. Based on magnetization measurements, it is found that a globe current can flow on macroscopic sample dimensions with Jc of ~3.9x10^3 A/cm^2 at 5 K and self field, while a high Jc about 2x10^5 A/cm^2 is observed within the grains, suggesting that a significant improvement in the globle Jc is possible. It should be noted that the Jc exhibits a very weak field dependence behavior. Furthermore, the upper critical fields (Hc2) determined according to the Werthamer-Helfand-Hohenberg formula are (T= 0 K) = 120 T, indicating a very encouraging application of the new superconductors.Comment: 14 pages, 6 figure

    Superconductivity at 25 K in hole doped (La1−xSrx)OFeAs(La_{1-x}Sr_x)OFeAs

    Full text link
    By partially substituting the tri-valence element La with di-valence element Sr in LaOFeAsLaOFeAs, we introduced holes into the system. For the first time, we successfully synthesized the hole doped new superconductors (La1−xSrx)OFeAs(La_{1-x}Sr_x)OFeAs. The maximum superconducting transition temperature at about 25 K was observed at a doping level of x = 0.13. It is evidenced by Hall effect measurements that the conduction in this type of material is dominated by hole-like charge carriers, rather than electron-like ones. Together with the data of the electron doped system La(O1−xFx)FeAsLa(O_{1-x}F_x)FeAs, a generic phase diagram is depicted and is revealed to be similar to that of the cuprate superconductors.Comment: 5 pages, 5 figure

    Point-Contact Spectroscopy of Iron-Based Layered Superconductor LaO0.9_{0.9}F0.1−δ_{0.1-\delta}FeAs

    Full text link
    We present point-contact spectroscopy data for junctions between a normal metal and the newly discovered F-doped superconductor LaO0.9_{0.9}F0.1−δ_{0.1-\delta}FeAs (F-LaOFeAs). A zero-bias conductance peak was observed and its shape and magnitude suggests the presence of Andreev bound states at the surface of F-LaOFeAs, which provides a possible evidence of an unconventional pairing symmetry with a nodal gap function. The maximum gap value Δ0≈3.9±0.7\Delta_0\approx3.9\pm0.7meV was determined from the measured spectra, in good agreement with the recent experiments on specific heat and lower critical field.Comment: 5 pages, 4 figure

    Nuclear magnetic relaxation and superfluid density in Fe-pnictide superconductors: An anisotropic \pm s-wave scenario

    Full text link
    We discuss the nuclear magnetic relaxation rate and the superfluid density with the use of the effective five-band model by Kuroki et al. [Phys. Rev. Lett. 101, 087004 (2008)] in Fe-based superconductors. We show that a fully-gapped anisotropic \pm s-wave superconductivity consistently explains experimental observations. In our phenomenological model, the gaps are assumed to be anisotropic on the electron-like \beta Fermi surfaces around the M point, where the maximum of the anisotropic gap is about four times larger than the minimum.Comment: 10 pages, 8 figures; Submitted versio

    Nernst effect of the new iron-based superconductor LaO1−x_{1-x}Fx_{x}FeAs

    Full text link
    We report the first Nernst effect measurement on the new iron-based superconductor LaO1−x_{1-x}Fx_{x}FeAs (x=0.1)(x=0.1). In the normal state, the Nernst signal is negative and very small. Below TcT_{c} a large positive peak caused by vortex motion is observed. The flux flowing regime is quite large compared to conventional type-II superconductors. However, a clear deviation of the Nernst signal from normal state background and an anomalous depression of off-diagonal thermoelectric current in the normal state between TcT_{c} and 50 K are observed. We propose that this anomaly in the normal state Nernst effect could correlate with the SDW fluctuations.Comment: 8 pages, 4 figures; Latex file changed, references adde

    Point contact Andreev reflection spectroscopy of NdFeAsO_0.85

    Full text link
    The newly discovered oxypnictide family of superconductors show very high critical temperatures of up to 55K. Whilst there is growing evidence that suggests a nodal order parameter, point contact Andreev reflection spectroscopy can provide crucial information such as the gap value and possibly the number of energy gaps involved. For the oxygen deficient NdFeAsO0.85 with a Tc of 45.5K, we show that there is clearly a gap value at 4.2K that is of the order of 7meV, consistent with previous studies on oxypnictides with lower Tc. Additionally, taking the spectra as a function of gold tip contact pressure reveals important changes in the spectra which may be indicative of more complex physics underlying this structure.Comment: 11 pages, 3 figures. New references included, extra discussion. This version is accepted in Superconductor Science and Technolog
    • …
    corecore